
 

 

  

QUIPU v3: Overview 
 

This document delivers some background information on QUIPU data 
warehouse generation software developed by QOSQO. It aims at creating 

understanding of the position of QUIPU in the BI landscape and development 
cycle. 

 
 
 
 
 

WHITEPAPER 
 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 2 / 38 

 

TABLE OF CONTENTS 
Introduction ................................................................................................................................................................................................. 3 

Data warehouse architecture ............................................................................................................................................................... 6 

Data Vault .................................................................................................................................................................................................. 13 

Model Generation ................................................................................................................................................................................. 18 

Advanced topics .................................................................................................................................................................................... 27 

QUIPU Technology .............................................................................................................................................................................. 33 

More information ................................................................................................................................................................................... 37 

 

 

 

 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 3 / 38 

 

INTRODUCTION 

QUIPU 

This Document is not a manual This document delivers some background information on QUIPU data warehouse 

generation software developed by QOSQO. It aims at creating understanding of 

the position of QUIPU in the BI landscape and development cycle. It is not a 

manual, and does not replace release notes. The document may not always be 

100% in sync with the latest release of the software, so please refer to the release 

notes for definitive information.  

Professional Edition After the initial release of QUIPU in the Open Source, QUIPU has found its way 

to its intended users and organizations small and large many of which have 

reported to benefit from it. 

As of version 3.0 Quipu is released only in a licensed (Professional) version. 

The Professional version 3.1 contains additional functionality: 

 Extending existing data warehouse models 

 Generating optimized code for specific database platforms 

Future Professional features will include 

 modifying the QUIPU generation templates 

 free exchange of custom templates between paying customers (market 

place) 

 support for multiple project teams working on a data warehouse 

 ..and much more 

We continue to invite the feedback from the user community, as it will be the basis 

for further development from our side. We may have already recognized the need 

for certain features, but we would love to be surprised with unexpected use cases 

that require features currently not present.  

Introduction videos In the past year several introduction videos were posted to youtube. You can find 

them on Channel @Quipu_DWM. 

(https://www.youtube.com/user/Quipu_DWM).  

History 

Data Vault modeling Consultants of our sister company Nippur as well as from QOSQO have been 

actively participating in data warehouse and business intelligence projects for 

many years. They have contributed or managed projects with large multinational 

companies based in the Netherlands as well as abroad. They have used the Data 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 4 / 38 

 

Vault modeling technique for many years now as best practice for modeling data 

in a way that fits business needs best.  

From best practice to software 
development 

The Data Vault model is particularly strong in ensuring lineage of data warehouse 

data back to their source systems, thus enabling a complete audit trail. At the same 

time the Data Vault model is very easy to adapt to changing requirements and 

extremely scalable. The strong architectural foundation of Data Vault and the 

simplicity of its design open the way to automation. Our consultants have created 

quite a few customer specific generator scripts to create and populate a data 

warehouse.  

Early automation efforts In some cases we created tailor-made fully automated data warehouse 

management solutions. Complete source and target models, ETL code 

specifications, scheduling and documentation are managed and maintained using 

a single repository. The lead architect of QUIPU was involved in the design and 

realization of one such effort of a large Netherlands based Bank / Insurance 

company. Currently, QOSQO is responsible for the support of this software.  

Development of QUIPU This specific solution, combined with our best practices at other customers 

sparked the idea to develop a data warehouse management software solution 

back in 2008.  

QUIPU: an ancient Inca 
recording device 

The quipu or khipu (sometimes called talking knots) was a recording device used 

in the Inca Empire and its predecessor societies in the Andean region. A quipu 

usually consisted of colored spun and plied thread or strings from llama or alpaca 

hair. It could also be made of cotton cords. The cords contained numeric and other 

values encoded by knots in a base ten positional system. Quipus might have just a 

few or up to 2,000 cords. 

 

Quipucamayocs (Quechua khipu kamayuq, "khipu-authority"), the accountants of 

Tawantinsuyu, created and deciphered the quipu knots. Quipucamayocs could 

carry out basic arithmetic operations such as addition, subtraction, multiplication 

and division. They kept track of mita, a form of taxation. The Quipucamayocs also 

tracked the type of labor being performed, maintained a record of economic 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 5 / 38 

 

output, and ran a census that counted everyone from infants to "old blind men over 

80." The system was also used to keep track of the calendar. 

[source and images: wikipedia, http://en.wikipedia.org/wiki/quipu]  

http://en.wikipedia.org/wiki/quipu


QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 6 / 38 

 

DATA WAREHOUSE ARCHITECTURE 

Starting points 

Layered data warehouse 
architecture 

A data warehouse (DW) architectures consist of several layers. The first one is the 

source layer, representing the source systems that contain the data to be used for 

reporting and analysis (business intelligence) purposes. The second layer is the 

actual data warehouse where selected (or in rare cases: all) source data is 

offloaded from source systems and collected in the 'memory' of the organization. 

Subsets of data are then created to satisfy needs of specific functional areas or 

domains in the third layer. This layer is called the data mart layer. The fourth layer 

presents the relevant information to end users, the presentation layer.  

QUIPU generates models and 
load code 

QUIPU aims at generating the generic core components in the data warehouse 

layers of the architecture. It is particularly strong in generating, maintaining and 

populating (database) structures to store historical data, both transactional data 

and reference data. Apart from the data structures QUIPU also generates the 

(SQL) code to load the data correctly in the data warehouse. QUIPU is designed 

to operate in a multitude of environments. 

.

 

At the core of QUIPU lies a data transformation engine that transforms typical 

relational data models into a data model that is optimized for data warehousing: 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 7 / 38 

 

the Data Vault. This core engine can be used to transform a source database into a 

Data Vault, creating what is called a 'source data vault'. But the same engine can 

also be used to generate a data vault version of an enterprise data model, creating 

what is called a 'business data vault'. And obviously both usages can be combined 

to create a more complex, layered data warehouse architecture. 

QUIPU contains several switches that allow the data warehouse architect to 

choose variations on the 'official' data vault specification. An example is the 

'Historical Data Archive': a data model using 'technical' keys instead of business 

keys. This HDA can be implemented in stead of a source data vault. See advanced 

topics for more details.  

No business rules in QUIPU As QUIPU's added value lies with the generic modules, it implies all solution 
specific modules (mainly the data transformations that may be required) will have 

to be realized outside of the QUIPU product.  

In most situations: 

 the raw source data is not fit to fulfil the needs of the business. Sometimes 

complex business rules are required to integrate data from different sources 

(e.g. match external customer or supplier data to internal data structures). 

 hierarchies are added to the source data structures, and complex KPI's are 

calculated for different levels of the hierarchy. 

All of these derivations need to be implemented outside QUIPU, either using ETL 

tools or BI front-end tools.  

Modeling 

Data Vault - efficient, 
expandable historical record 

QUIPU is based on the Data Vault model. See http://danlinstedt.com/solutions-

2/data-vault-basics/ for more information and background. 

The key strengths of this model are: 

 it allows capturing an historical record of any data ('transaction' as well as 

'master' data) 

 it is optimized for (near) real-time updates (allows massive parallel 

processing, late arriving transactions etc.) 

 it isolates changes in the model and is thus flexible (can be adapted to 

changing business needs with relative ease)  

Basic use of QUIPU 

Business Data Warehouse In its most basic form QUIPU can be used to generate a single, integrated data 

warehouse based on a single, harmonized model. This model, the 'business model', 

http://danlinstedt.com/solutions-2/data-vault-basics/
http://danlinstedt.com/solutions-2/data-vault-basics/


QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 8 / 38 

 

is a single, comprehensive and consistent representation of all entities (with their 

relations) as recognized by the business users.  

This business model does not normally exist in any source system: it must be 

developed in close cooperation with the business to reflect the terms and 

definition of the data that the business chooses to work with. It identifies the 

business keys that identify the various business entities and their inter-relations. It 

also specifies all relevant attributes and facts related to these business entities that 

are required for management reporting, (predictive) analysis, etc. 

This business model, when provided to QUIPU, will be transformed into a Data 

Vault that can be completely time-variant: capturing not only business events when 

they occur in time, but also capturing the changing reference data. Thus the data 

warehouse based on Data Vault can reproduce the business entities and their 

relations as they are defined at any point in time.  

3NF business data model The business data model should be in 3NF (third normal form) and can be created 

using one of many database modeling tools. The business model cannot be 

imported in QUIPU directly (in the current version). The easiest way to get the 

business data model into QUIPU is by physically implementing the -empty- 

database in one of the many RDBMS'es supported by QUIPU and using QUIPU's 

reverse engineering function. 

Once the model is available in QUIPU, the following functions are available:  

Generate Staging area  Generate Staging area. The source data will have to be delivered in a format 

that is more or less dictated by the business model into a staging area. The 

tables are generated by QUIPU, as well as template SQL statements that 

can fill the staging area from the source tables -assuming these tables exist 

physically in the same RDBMS system-. It is the task of an external ETL tool to 

load the data in the staging area if the source does not exist in this exact form 

or lives in a different database platform.  

Generate Data Vault model  Generate Data Vault model. QUIPU sports a number of powerful algorithms 

that analyze the source model's tables, keys and relations in order to 

generate a valid data vault model. This model can be further optimized 

through direct interactive manipulation (or in future versions via export and 

import functions).  

Generate Load functions  Generate Load Functions. The data delivered into the staging area are 

loaded into the Data Vault tables. Extensive validation and logging assures 

that the data warehouse always retains a valid state. All data elements in a 

load are marked with a unique load id (or alternatively a source id and 

timestamp), allowing various housekeeping functions on the data loaded (e.g. 

archiving data or removing faulty loads). QUIPU also generates code to load 

the staging area, but this should be regarded as demo code as in practice the 

staging area is often loaded directly from the source systems. Generation is 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 9 / 38 

 

based on templates that can be adapted to exploit the features of various 

database management systems.  

Generate views  As a first step towards supporting BI, QUIPU generates views that 

reproduce the 3NF source model (thus hiding all the complexities of the 

Data Vault) for query purposes: 

 current state (showing actual data) 

 last known state (actual data including the last known state of 

deleted data) 

 point-in-time state (same as 'current state, but then for a specified 

point in -past-time) 

The picture below shows the complete architecture.  

 NOTE: Data Marts are required to deliver data to the business. Functionality to 

assist the construction of Data Marts will be implemented in a future version of 

QUIPU.  

 

Business Data Warehouse 

Enterprise DW Architecture 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 10 / 38 

 

Enterprise Requirements QUIPU is designed to support the Enterprise Data Warehouse concept. It can 

certainly be used in less complex environments but is designed with the 

requirements of larger enterprises in mind. Thus, it is capable of capturing and 

integrating information simultaneously from multiple sources and scaling to large 

data volumes.  

BI stack QUIPU can integrate with Open Source or commercial products, to offer a 

complete solution. The solution then includes a modeling tool, ETL and a BI front-

end stack.  

Near-real-time QUIPU is aware of the shifting role of the DW in today's businesses. More and 

more the DW is considered a key component in the information architecture, 

supporting not only the strategic information requirements of senior management, 

but also the tactical and even operational requirements at the shop floor. The latter 

require frequent data updates (near real-time).  

Implement a multi-layered 
version 

With QUIPU it is possible to implement a multi-layered version of the Data Vault.  

Source Data Warehouse The 'raw' source data is captured in a 'source Data Warehouse'. These are 

generated as Data Vaults and are directly derived from the (logical) data models 

of the sources. They are ideal for operational, single-source reporting and analysis. 

Where business keys can be recognized they can be the first step towards building 

the 'business Data Warehouse' as they can bridge data from multiple source 

systems. If business keys cannot be identified easily it is possible to build a source 

Data Warehouse without the hubs and links: a Historical Data Archive (HDA).  

Business Data Warehouse The business needs a unified model to report from: the 'business Data Warehouse'. 

It is built for integrated, business wide reporting and analysis. 

The Business Data Warehouse complements the data in the Source Data 

Warehouse with integrated data (through cleansing and mapping algorithms) and 

derived data (calculated using business rules). It is based on a consistent data 

model, specifically designed to support the business.  

In most cases the integration requires mapping of business keys and 

transformation of the source data. Although it would be possible to distribute the 

transformed data directly into data marts, this is often not desirable: 

 if the transformed data is considered business data in its own right: even 

when the transformation rules change, the data needs to remain available as 

it was historically derived (transformed). 

 if transformations need to be implemented only once in order to safe-guard 

consistency. It can be difficult to enforce that the same business rule is 

correctly applied when building multiple data marts. It is often much easier to 

achieve consistency when the result is stored in a second Data Warehouse 

layer: the Business Data Warehouse. 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 11 / 38 

 

The business Data Warehouse is in its essence a logical layer: it is a complete 

model (describing all business entities) but some entities may simply refer to (be 

views on) the underlying source Data Warehouse layer. In most cases only a small 

subset of the entities in the business Data Warehouse model need to be 

implemented physically.  

Data Mart layer QUIPU typically creates more tables than the original 'point-in-time' 3NF source 

models. As such it creates a model quite opposite of a star-schema and not 

particularly strong in query- performance on the dominant RDBMS systems 

(Oracle, MS SQLServer, DB2, MySQL, etc.). 

This is the technical reason why on most platforms a Data Mart layer is required. 

The data is stored in 'raw' (source) format in the data warehouse, so all of the 

original data is available. This raw format of the data is good for operational 

reporting, but not optimal for other reporting and analysis purposes, as there are 

no derived data (e.g. KPI's) available and integration of data from different sources 

can be hard. 

This is the business reason for creating datamarts.  

Summarizing: the Data Mart layer contains a subset of the data and is optimized 

for query performance: data is integrated, aggregated and pre-calculated, often 

stored in a star-schema. 

The picture belows shows the complete Enterprise DW Architecture.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 12 / 38 

 

 

Extended DW Architecture 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 13 / 38 

 

DATA VAULT 

Basics of the Data Vault 

Concept The Data Vault concept has been developed by Dan Linstedt. A good starting 

point for learning more on the Data Vault is the dedicated wiki page 

http://en.wikipedia.org/wiki/Data_Vault_Modeling. 

The Data Vault structure consists of three basic table types: Hubs, Links and 

Satellites. To satisfy specific requirements QUIPU additionally supports Reference 

tables.  

Hubs 

List of business keys Hubs contain a simple list of business keys. They must be meaningful for the 

business and uniquely identify an entity (or object) recognized by the business (like 

customer, product, supplier, invoice, etc.).  

Sometimes -ideally- these business keys can be found in source systems as 

primary keys in databases, or unique indices.  

The business keys - and thus the hubs- are the anchor points of the entire model!  

Business keys must be unique It is important to stress the requirement for global and historical uniqueness of the 

business key. 

This means that the business key should not be used in different parts of the 

company to mean different things (often the case in larger organizations, where 

e.g. different customers with the same key may be created in different countries). 

It also means business keys should never be reused (often seen in older systems, 

where a limited set of keys is re-used after a certain period of time). In both cases 

the Data Vault will treat the data it stores from these different business entities a 

belonging to the same entity. This will confuse users of the data warehouse, as it 

probably confuses the business in the operational processes. 

So it is extremely important to find and analyze the business keys before 

constructing the Data Vault. Analysis should include inspection of source data 

(data profiling) and verification with business domain experts.  

Inserts only The hub does not contain any other business data. As the business keys themselves 

do not change, the hub is not time variant. Records will never ever be updated or 
deleted. The table will only see record insertions (which guarantees a very efficient 

loading process).  

Hub structure The hubs contain: 

 the business key 

http://en.wikipedia.org/wiki/Data_Vault_Modeling


QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 14 / 38 

 

 the source system that first reported the business key to the data warehouse 

 the timestamp when it was first recorded 

 optionally a meaningless id (may perform better when business keys are 

compounded and/or very large) 

 some technical fields (like the meaningless ID generated by the data 

warehouse if chosen and an audit id identifying the process that created the 

record).  

 In QUIPU hubs generated from different source-models are separated physically 

and logically. This means shared hubs need to be created virtually, by (manually) 

defining views over multiple physical hubs. As an alternative the architect may 

tweak the QUIPU generated ETL code so all references to a shared hub point to a 

single physical implementation of that hub. Future versions of QUIPU will support 

shared hubs more transparently.  

Hub Satellites 

At least one satellite per hub 
per source 

When the hub only contains the business keys, the relevant data belonging to a 

business key is stored in the satellites. Each hub has at least one satellite that 

records at least the business validity of the business key.  

As a principle a separate satellite for each source system should be created, 

recording the data that this specific source holds on the business key, over time. 

Each of these satellites contains the 'voided' attribute that indicates the business 

key is no longer valid in a particular source system.  

Source system clones can feed 
into a single satellite 

Generally a single implementation of a transaction system should be considered a 

source system. So an organization that has implemented an ERP system for each 

of its division should consider each as a separate source. 

However, under certain conditions it may be possible -and then often also 

desirable- to consider multiple transaction systems as a single source. This is the 

case when: 

 all systems share the same logical and technical (data) design (multiple 

clones of the same system) 

 master data management is implemented across all systems, assuring 

business keys are uniquely defined and shared across all systems. 

Under these conditions all systems can feed into the same source Data Vault, 

possible greatly reducing the number of tables and load processes and at the same 

time simplifying querying the data. 

Still one needs to realize that this simplification may come at a price. For example 

parallel loading from multiple source systems becomes more complex or even 

impossible. There are very likely to be other consequences.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 15 / 38 

 

At least one record per 
business key 

In this minimal case the satellite would only contain technical fields, and minimally a 

single record per business key that is known by this source (creation/first seen). 

When the business key is deleted in the source another record is inserted 

indicating the business key is no longer valid. This demonstrates that in the satellite 

the history is stacked: new data is recorded by inserting new records with a Start 

Timestamp.  

Hub entries can be generated 
from transaction tables 

Ideally hub entries (Business Keys) are generated when a source table is loaded 

containing the master data on this Business Key, before the transactions are 
processed. Thus, the information on the BK is available when transactions arrive. 

This cannot always be guaranteed, mostly because of timing issues (e.g. master 

data may be loaded only once a day, whereas transactions are loaded as they 

arrive during the day). 

In the Data Vault this is not an issue, as the Hub will be updated when the 

transaction arrives. The corresponding record in the hub-satellite will be absent 

until the master data is loaded.  

Inserts Only As changes in the source data are recorded in new entries in the satellites also this 

table can be refreshed with only insert statements.  

End-dating Although logically not required, for performance reasons on specific database 

management systems it may be necessary to end-date a record when a new 

record is created in the satellite. An additional End Timestamp can be generated. 

This is the only reason for a record to be updated in the satellite.  

Satellite Structure The satellites contain: 

 the unique key of the hub it refers to (either the business key or meaningless 

id) 

 the 'start' timestamp: from what time is the data valid (usually the data was 

recorded in the data warehouse) 

 optionally an 'end' timestamp: until what time is the data valid. 

 the source system that delivered the data to the data warehouse 

 some technical fields (like the audit id identifying the process that created the 

record, the voided flag that marks the data as deleted in the source).  

Links 

Links record relations between 
business keys 

Business entities interact in many ways, and these interactions are reflected in 

(logical) relations between business keys in source systems. In the Data Vault 

these relations are recorded in Link tables. 

Examples of these relations are all kind of structures and classifications in the 

master data (e.g. chart of accounts, product structure, organizational structure, 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 16 / 38 

 

customer classifications, etc.) and of course the facts registered in the source (e.g. 

a sale of a product to a customer by a sales representative on a specific date). 

Similar to the hub the link table only contains the business keys or meaningless id's, 

when these are preferred. All data linked to the relation are stored in a satellite 

table (link satellite).  

Link structure The link contains: 

 the unique key of the hubs it refers to (either the business key or meaningless 

id): at least 2. 

 the timestamp: when was the data recorded in the data warehouse 

 the source system that first reported the relation to the data warehouse 

 some technical fields (like the audit id identifying the process that created the 

record).  

Link Satellites 

Similar to Hub satellites Link satellites share all the characteristics of a hub satellite. 

The difference is that a link satellite contains data describing a relationship. For 

links between master data elements (e.g. the organizational structure) these 

satellites contain little or no data and provide only information on the validity of the 

relationship. 

But when facts are registered in the relation (e.g. a sale) the link satellite will 

contain all the details of the fact (e.g. number of products sold, the unit price, total 

value, etc.)  

Reference tables 

Reference tables can lead to 
an excessive number of links 

A reference table is generally speaking a very simple, rather static table that is 

often referenced from many other tables. It is often used in source systems to 

define a restricted value set (domain) for a certain attribute. E.g. the list of 

currencies, countries, colors available for a product, etc. 

By default (and following strict Data Vault modeling principles) a hub and satellite 

are created for each of these tables, as well as link tables to all hubs that reference 

these tables. 

Querying these tables can then become rather complex, as in all cases the 

satellites of the reference tables need to be joined in (via the link tables) when the 

current value is requested for a given business key. 

Also the model can become more cluttered due to the abundance of link tables 

that are generated.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 17 / 38 

 

Links are not generated for 
reference tables 

To alleviate this problem it is possible to mark a source table as a reference table. 

The result is that a hub and satellite will be created for the reference table as 

normal, but no link tables between the reference hub and the referring hubs are 

generated.  

Joins to reference tables must 
be added in the queries 

The reference to the reference table must of course still be stored somewhere. 

This is now a function of the satellite of the referring entity. 

Of course the data mart architect will have to understand what reference tables 

exist, and create the appropriate joins in his queries.  

History is kept for reference 
tables 

In the QUIPU implementation of reference tables, with a 'regular' hub and hub-

satellite all history of (changes to) the reference table are kept. A further 

simplification would be to simply overwrite changes to the reference table, as they 

are very likely to occur only sporadically. Of course dropping history violates a 

basic concept of the data warehouse (always store all history) and potentially 

poses an auditing risk. 

Reference tables without history are not (directly) supported by QUIPU.  

 Caution: use with care. The Reference table feature should be used with proper 

caution, as it breaks one of the key aspects of the Data Vault. In a strict Data Vault 

all relations are modeled as links. This makes it extremely easy to assess the impact 

of change. The existence of references from satellites to the hubs of reference 

tables breaks with this concept. This means changes to reference tables can 

impact a larger part of the Data Vault model. The benefits of simplifying the Data 

Vault model are very solid (for load processes, query processes and queries) so it 

is common practice to implement reference tables whenever it makes sense.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 18 / 38 

 

MODEL GENERATION 

Data Vault Generation 

Five steps to Data Vault 
generation 

The generation of a Data Vault from a source system follows a seven step 

approach: 

 Import or reverse engineer a source model 

 Generate the staging area as a (near) 1 to 1 copy 

 Generate a Data Vault proposal from analysis of the staging model 

 Evaluate the result and influence the generation process by: 

 (Re-)Define the business keys 

 (Re-)Define the relations between source tables 

 Ignore source columns that contain invalid or irrelevant data 

 Regenerate the Data Vault model 

 Final customization 

 Rename tables and/or columns if required to get an easier to 

understand model and add meta data to document the model 

 Split satellites, move attributes between satellites to group logically 

related attributes and/or separate frequently updated attributes 

from more static attributes 

 Generate the scripts 

 

Data Vault generation step 1: Import model 

Reverse engineer RDBMS Reverse engineering is supported for a large number of relational database 

servers and file based 'databases' (Excel, XML, CSV, etc.). Requirements are: 

 availability of a JDBC connector 

 a connection between the QUIPU back-end and the database (or file) server 

 sufficient rights to read the database catalog. 

The reverse engineer module will import tables, columns, relationships and indices.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 19 / 38 

 

No direct support for database 
modeling tools 

Direct import of the model from a database modeling tool (e.g. ERWin) is 

currently not supported. The easiest way to transfer a model from such a tool to 

QUIPU is via generating a DDL script in the tool and using it to create a dummy 

database in any of the many supported database systems. This database can then 

be reverse engineered by QUIPU.  

Data Vault generation step 2: Generate Staging 

Staging From the imported source model a staging area model is generated. This model is 

basically a one-to-one translation of the source model where data-types are 

converted when required, but otherwise no changes are made.  

Copy of source model Staging models generated by QUIPU are almost 1-to-1 copies of their source 

models. The only difference between the two is that the staging model contains 

some extra administrative fields. These fields are: 

 A timestamp to keep track of the time data entered the staging area. 

 A sequence number to logically order data entries in the staging area. 

 A voided field indicating whether a data entry contains a deletion in a 

source system. This is needed to handle delta loads. 

Audit fields to keep track of the source of the data entered in the staging area.  

Data Vault generation step 3: Generate Data Vault proposal (Analyze staging)  

Rule based generation The Data Vault is generated from the staging model based on a fixed decision tree 

implemented in the code. 

The first rule is that the table must have a unique key. It consists of a single or 

multiple columns. And each column can contain a technical or business key. If a 

unique key does not exist, the table is ignored. 

Further rules: 

A source table is a Hub unless proven otherwise: the general principle in the 

generation of the Data Vault is that all tables in the source become hubs, unless it 

can be determined (using a set of rules) that the table should be treated as a link or 

satellite table. This is generally the case when the principles ruling the Data Vault 

can be recognized in the source system. 

A clear example is the many-to-many tables found in most relational systems that 

register transactions (e.g. a sale may be registered in a table with as primary key a 

reference to the product table, the customer table and a timestamp). Such a table 

should be recognized and translated to link and link satellite construction.  

Analysis options It happens that one (or more) of the business keys in a table is not a real business 

key. For instance: a table contains data with a business key and extra date column 

as its unique key. Strictly speaking, such tables should translate into link-satellites, 

with the extra (in this case: date) column representing a second Business Key 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 20 / 38 

 

placed in its own Hub. But often these extra columns have little business value and 

are NOT linking pins to other parts of the data model. The resulting Data Vault is 

then overly complex and hard to query. 

QUIPU offers two distinct options to prevent this situation: 

Multi-active satellite: Allow creating satellites with a different cardinality then its 

hub. The table is mapped to a satellite on the hub, but the satellite contains 

(potentially) multiple records for each business key at any given time (hence the 

name: multi-active). The records are distinguishable by the extra key field(s). 

Allow peg legged links: Allow links that link only to one hub. Now the extra key 

field(s) are in the link table, as one would expect, but the corresponding hub is not 

implemented. All data on this link is kept in a link-satellite. See 

http://en.wikipedia.org/wiki/Data_Vault_Modeling for more information.  

Log of the results of the 
decision tree 

The result of evaluation of each node in the decision tree is recorded in a log file 

and is shown in the GUI. This allows the architect to evaluate the results and make 

the necessary changes to the source model to arrive to the desired result within 

the limits of the decision tree.  

Business keys derived from 
primary or alternate keys 

The Data Vault decision tree uses a primary key or unique index constraint to find 

the candidates for business keys. 

In many cases the primary key is a simple code that is actually meaningful to the 

business, providing a natural business key. 

The source system may use meaningless keys, however, that have little or no value 

to the business. The real business key is then often defined as an alternate key 

and/or a unique index is defined on the real business key.  

Source system blues QUIPU will always create a Data Vault that is technically correct. It will however 

not always be the most efficient model, nor will it always be the model that you 

would like to have. 

The reason for this is that the optimal Data Vault model cannot be derived by 

analyzing the source system structure as it is registered in the catalog of the 

RDBMS. 

There are plenty of potential problems, including but not limited to: 

 Many source systems are implemented without foreign key relationships 

guarded by the RDBMS. The database consistency is then assured by rules in 

the software. Without foreign key relations, it is not possible for QUIPU to 

create link tables. NOTE: these relations can be added manually in QUIPU 

to aid automated generation. 

 Table and column names in the source may be generated, or for other 

reasons be impossible to interpret. It is clearly undesirable to import this 

interpretation problem into the Data Vault model. 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 21 / 38 

 

 Tables are often 'overloaded'. Multiple logical entities are mapped into a 

single table. 

 Example 1: A column in the table indicates to what entity the row 

belongs. This is often found in source systems as implementation for 

reference tables, consisting of a code and description. 

 Example 2: Table are not fully normalized, so a 'parent' table (e.g. 

product group) is redundantly stored in a 'child' table (e.g. product). 

 Columns may be used for other purposes then their names imply. Again, 

importing these confusing names into the Data Vault model is undesirable. 

 Logical entities may be split over multiple physical tables (e.g. transaction per 

month) 

All of these issues (and many more) will lead to the generation of a sub-optimal 

Data Vault. Issues related to the structure can -within limits- be resolved within 

QUIPU by creating or modifying relations, renaming tables and columns, defining 

business keys. But issues related to the contents of tables (like overloading) cannot 

currently be resolved by QUIPU. If you want to resolve these, you will have to 

create some ETL to split or combine the physical tables and find a way to offer the 

logical 3NF model to QUIPU (e.g. by creating a dummy database with the correct 

structure).  

Data Warehouse Architect is 
in control 

Ultimately the data warehouse architect needs to check the result of the Data 

Vault generation process and manually intervene if necessary.  

 NOTE: The initial release for QUIPU will generate a separate Data Vault for each 

source model offered. So QUIPU will not integrate different source model into a 

single, linked Data Vault.  

Data Vault generation step 4: Evaluate and modify generated Data Vault proposal (Prepare staging)  

Including / Excluding columns 
or tables 

Specific tables and/or columns can be excluded from the generation process by 

marking them as 'to be ignored'. This is particularly important when generating a 

source data warehouse from a source that contains tables or columns that are not 

used (properly) by the business.  

History By default all columns are set to track history after generating the Data Vault. 

However for some columns you might want to disable history tracking and include 

only the latest provided data. This may be the case for highly volatile, operational 

data (like process status-information), or on the opposite side of the spectrum: for 

very stable, descriptive information (like the descriptive name for organizations, 

equipment, etc.). In those cases you can be sure that people will only ever be 

interested in the actual values. 

QUIPU allows switching history tracking off for particular columns. 

NOTE: switching off history breaks the Data Vault. You will no longer have a full 

audit trail for this data in your data warehouse. So use it wisely!  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 22 / 38 

 

Adjusting the business key The QUIPU analysis routine may not always be able to correctly find the Business 

Key(s) from the structural information it gets from reverse engineering the 

database. You can add and remove columns to the business key to correct these 

situations. 

Columns that are ignored cannot be part of the business key. 

Every table needs to have a business key. If not the data vault generation 
process will automatically ignore the table. 

We don’t recommend using technical (or generated) columns as business 
keys. While this will result in a technically correct Data Vault model, you 
can encounter problems when creating datamarts.  

Reference tables A reference table is a table that will be included when generating a Data Vault, but 

all foreign key relationships connected to this table will be ignored. This will result 

in a reduced amount of link tables in the generated data vault. Tables can be 

marked as reference table in the QUIPU GUI.  

Add / remove relationships QUIPU may not always get the correct relationships from the reverse engineering 

routine. These relationships are essential to the Data Vault generation routine, as 

QUIPU will map them to hub-satellites, links and/or link-satellites. It is therefore 

essential that QUIPU allows relations to be edited. 

Each relationship should have a sensible, descriptive name, as this name is used 

when the relationship is transformed to a link as the link name.  

Relationship groups As a default QUIPU will generate a link table between 2 hubs for each relationship 

it finds. Very often it is more sensible to combine several relationships into a single 

link table, linking multiple hubs together. 

This can be achieved by defining a 'Relationship group'.  

Data Vault generation step 5: Regenerate Data Vault proposal 

Implementation options When the logical model has been defined to satisfaction, it is time to start 

considering the -physical- implementation options. These options have no impact 

on the data content of the data warehouse, but may have an impact on the 

performance in a particular database system or affect the possibilities for 

scheduling, monitoring and data maintenance tasks.  

Model level implementation 
options 

Record source and timestamp: Choosing this option will add a record source and 

timestamp column to each table in the staging area (default). 

Audit ID: Choosing this option will add an audit ID column to each table in the 

staging area. The audit ID can point to a record in an audit table with record 

source and timestamp information, but could also contain additional information 

about the loading process (e.g. on extraction date, # of records in the export, 

operator, etc.).  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 23 / 38 

 

 NOTE: QUIPU will load these fields into the data warehouse for later reference, 

but will NOT fill these fields (in the generated ETL code to load the staging area). 

Loading the staging area is outside the scope of QUIPU.  

Model/Table level 
implementation options 

Generate surrogate keys: QUIPU can provide each data vault hub and link with a 

generated primary key (hub_id or link_id). Subsequently this key will be used in 

the relationships that connect these tables to each other and to their satellites. 

When this option is disabled the business key of the staging table will be used as 

primary key in the Data Vault. Using generated keys can greatly reduce the size of 

the data warehouse and improve query performance, especially when business 

keys are multi-field and large (strings). It comes at a cost, however: loading the 

data warehouse becomes (potentially a lot) slower, as all business keys need to be 

translated to the correct surrogate key. Queries may become harder to build and 

read, as the surrogate keys have no meaning to the business. 

Use end-dating: By default all satellites in the generated data vault will get an extra 

column called “load_date” that will contain the date of inserting. This column is 

required and sufficient for keeping the history. It is therefore mandatory and part of 

the primary key.  

Retrieving the correct historical record from such a table may be difficult for a 

relational database: a complex query may be required that could also perform 

badly. QUIPU offers the option to add another column called “load_date_end” 

that can be used to line up all records in chronological order. This field will be filled 

when a new version of the record is entered in the database, thus 'closing' the 

previous record. It can be used to simply single out the correct record with a SQL 

construct (load_date_start <= date < load_date_end).  

Data Vault generation step 6: Modify / add metadata 

Modify the generated Data 
Vault 

When the Data Vault is generated, there may be cause to modify some aspects; to 

simplify the model or improve performance.  

Split a satellite The fields in a satellite may not change at the same rate. Also, some fields may 

always change as a set, not individually.  

Example: An employee table may contain info on name, sex, date and place of 

birth and address details. The personal identification attributes will (in general) 

never change. The address details may change, but if they do the individual 

attributes (street, city) often change together. 

This is a typical case where splitting the satellite could result in a better model: 

attributes that 'belong together' and 'change together' are placed in a separate 

satellite. This makes the model easier to read and interpret when at the same time 

requiring less disk space and offering better performance.  

Merge satellites Sometimes it makes sense to combine multiple satellites in a single one. Thus, one 

can consolidate information from multiple source tables in a single table in the data 

warehouse. The model becomes simpler at the (potential) cost of storage 

requirements.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 24 / 38 

 

 NOTE: Combining satellites from different source systems is not recommended. 

Different source systems have very often different characteristics in terms of 

completeness, correctness, timeliness etc. It is wise to store the data apart, so 

these characteristics can be easily assigned to a complete satellite table in the data 

warehouse (as opposed to columns in a combined satellite).  

Rename objects You can rename all tables and columns in QUIPU, so you can apply any naming 

convention. This will never alter any mappings.  

Data Vault generation step 7: Script generation 

Template based generation QUIPU uses templates to generate scripts to generate databases and load code. 

These templates can be customized to support specific features of the various 

RDBMS's. So for each SQL dialect a template could be provided. The initial 

release comes with a template for standard ANSI SQL 92 intermediate code. 

Additional templates will be released when they become available through 

development at QOSQO or in the community.  

DDL QUIPU generates Data Definition Language scripts to create: 

 The staging area of the data warehouse 

 The Data Vault area of the data warehouse 

 3NF-views on the Data Vault (mimicking the original source model)  

ETL QUIPU generates the load code for the staging area and the Data Vault.  

The staging area load code assumes that the source database is situated in the 

same RDBMS, and the specified connection to this RDBMS has sufficient rights in 

the source database. This is of course often not the case. In these situations the 

code may serve as a sample demonstrating the logic to fill the staging area.  

Delta vs Full Load The Data Vault load code implements a delta detection mechanism. This means 

the code will function properly on both full data sets and delta data sets (only 

containing the changes in the source), and you are not required to indicate 
whether you offer full or partial data sets. 

The problem with delta data sets is that QUIPU will not be able to detect deletions 

in the source (unless deleted records are marked by an attribute and offered in the 

delta set). This is the one and only reason for QUIPU to offer an option indicating 

that the data set offered is a full data set: any record not in the full data set is 
considered deleted from the source. 

QUIPU will end-date the current satellite record(s) and create a new record 

marked as deleted. Also, any hub-entry not found in the source will be marked as 

deleted.  

Staging Load table In practice, delta and full loads are often required intermittently for a specific table. 

It is common practice to process the smaller delta data sets on a daily basis, 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 25 / 38 

 

accepting that deletes are not recorded. Once every week or month a full data set 

is processed to record the deletes that occurred in this period. 

To facilitate this practice QUIPU implements a special table in the staging area 

with a record for each source table. The data warehouse manager can indicate for 

each source table whether a full load or a partial load is required. 

QUIPU generates code that will check this table and automatically perform the full 

or partial load as specified in this table.  

Splitting the load process It is possible to split the load process in multiple jobs. For instance in many cases it 

makes sense to load the master data only once a day (with the full load option), but 

load the transaction data multiple times a day (to get more actual data and prevent 

very large load jobs at the end of the day). 

This works well, with the one consequence that for NEW master data only the 

business key will be available until the all master data is refreshed. 

All of this is not directly supported by QUIPU, but can be achieved by either 

splitting up the generated ETL scripts or building a scheduling solution that directly 

addresses the QUIPU repository.  

Re-starting load jobs When the same data set is offered multiple times (either full or delta sets), no 

change will be found, and thus no changes will be recorded in the Data Vault. 

This means interrupted data loads can be restarted without any adverse effects.  

All tables in a single export can be loaded in any particular order (and even in 

parallel), although it makes sense to load master data before loading transaction 

data. 

Please note that offering jobs out-of-order (older extracts after newer extracts) will 

cause incorrect results in the Data Vault!  

 NOTE: that the ETL scripts will only implement mapping from source tables to 

target tables. No transformations can be specified.  

End-dating There is an option in QUIPU to add end-dates to the satellites. The end-date 

allows simpler SQL (and often: faster) queries on the Data Vault, using the SQL 

construct "WHERE load_date_start <= point-in-time < load_date_end" 

End-dating the satellites means that the each record in the satellite needs to be 

updated with the start-date of a later record. If no later record exists, the end-date 

gets a date very far in the future (31-12-9999).  

End-dates can be updated when new entries arrive, but this slows down the data 

load processes, which can be a problem in certain scenario's (e.g. for near-real-

time updates for operational BI). That is why QUIPU implements end-dating as a 

separate process that should be executed after loading the data.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 26 / 38 

 

Views Some views will be generated by QUIPU that will present an easier to interpret 

(and query) representation of the Data Vault.  

The views will come close to rebuilding the 3NF data model that was used for the 

Data Vault generation (unless manual interventions have changed the model).  

As the Data Vault stores historical versions of all data, and the 3NF model in 

general does not, the views will need a point-in-time to indicate which historical 

view is requested.  

Standard views included are: 

 the current status (using today as the point-in-time). 

 the current status including all deleted data (using today as the point-in-time) 

 the full historical record 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 27 / 38 

 

ADVANCED TOPICS 

Historical Data Archive 

'Informal' business keys In our practice working with Data Vault models for our clients we have learned 

that is not always practical or even possible to identify the 'true business key' for all 

business objects. Many systems work internally on technical keys. Business keys 

are often available, but seldom guarded as vigorously as the technical keys. This 

leads to a variety of data quality issues with these 'informal' business keys.  

There may be any or all of the following problems: 

 missing keys (no entry) 

 duplicate keys for different objects (e.g. due to re-use of keys) 

 multiple keys for the same object (e.g. due to spelling faults) 

 missing keys in the master data system (new keys are entered in slave 

systems) 

 expired keys in slave systems 

Bad business keys break 
business processes  

Problems with business keys are a problem in operations, as it introduces 

ambiguity in the business processes. The resulting confusion is the cause of many 

inefficiencies in the business.  

Bad business keys lead to 
inconsistent BI 

But apart from that they seriously reduce the capability of BI to produce reliable 

integrated reports spanning multiple systems and processes. Reports on the same 

business facts from different systems will produce different results!  

Master Data Management is a 
pre-requisite 

Master Data Management practices need to be introduced and enforced to tackle 

these problems. In most cases that will mean operational procedures and systems 

need to be adapted and possibly a dedicated MDM system needs to be 

implemented. 

The business cannot wait for such efforts to bear fruit before they can get access to 

their vital management information.  

Historical Data Archive 
(HDA) built on technical keys 

What can be done when business keys are not available? The next best thing is to 

store the historical data linked to the technical keys of the sources. This at least 

assures that a true record of the historical changes of the source can be kept. 

This can easily be achieved using QUIPU, by simply following the default process. 

When QUIPU analyzes a source model it will always look for business keys as 

primary keys or unique indices of the source tables. If it finds such a key it will 

suggest to use this key as the business key. Of course in practice it often is a 

technical key, not a business key.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 28 / 38 

 

Risk: Disconnected source 
Data Vaults 

In the most extreme case (where all source systems have only disconnected 

technical keys) this approach results in a set of disconnected source data vaults, 

one for each source. 

The value of a hub in this environment can be disputed, as the primary role of the 

hub is to serve as a connection point between systems/processes. When a hub 

contains technical keys that are only known in a single system this value 

evaporates.  

HDA: satellites only It is therefore logical to dispel the the hubs (and links) and only implement 

satellites. 

The resulting environment is of course no longer a Data Vault, but is sometimes 

known as a Historical Data Archive (HDA). You could also label it as a Persistent 

Staging Area.  

Building the Data Warehouse 
on the HDA 

The advantage of implementing the HDA akin to Data Vault satellites is that is still 

possible to later find/define the true business keys and then start building a 'Data 

Vault'-like data warehouse by adding hubs and links. In some cases it may be 

possible to link these new hubs directly to the existing satellites. 

The picture below shows the complete architecture based on the HDA.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 29 / 38 

 

 

Historical Data Archive 

Support for distributed data warehouses: Hash keys 

Big Data challenges In the past years a new phenomenon has received a lot of attention, under the 

umbrella term 'Big Data'. With the arrival of new data capturing and processing 

technologies, in particular NoSQL databases and HADOOP, it became feasible 

to build and analyze huge data sets that are far too large for traditional relational 

databases.  

Often these data sets contain unstructured or semi-structured data that make it 

hard to combine the data (or results of the analysis) with data available in data 

warehouses. But there is potentially great value in achieving just that: combine the 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 30 / 38 

 

well-controlled and structured data residing in data warehouses with the new data 

sources residing in HADOOP and similar databases. 

One of the requirements for achieving this is linking the data in the Big Data stores 

to the business keys that form the anchor points in the (Data Vault) data 

warehouses. These links effectively expand the Data Vault concept to include data 

from Big Data stores. 

The challenge then becomes to: 

1. identify the business keys in the Big Data sets and 
2. assign them the meaningless keys that are used in (most) data vaults. 

Both steps can be a challenge indeed.  

The first because data is often not sufficiently structured and does not contain the 

controlled business keys in the data warehouse. This means that classification 

algorithms must be designed that can reliably add the business keys to the data in 

the Big Data stores: manual classification -as is usual in the structured sources of 

the data warehouse- is almost never an option as the data volumes are too large 

and/or the sources are not controlled by the organization. What is 'reliable' will 

depend largely on the intended use of the data. For many purposes (like marketing 

or user satisfaction assessment) relatively crude classification is sufficient. 

The second step is traditionally solved by lookup's in the data warehouse: the 

meaningless key is retrieved from the data warehouse if the business key already 

exists, or a new meaningless key is generated. In the latter case the business key - 

meaningless key pair is added to the data warehouse. This simple process can 

become a bottleneck however when processing huge data streams seen in Big 

Data environments in parallel environments.  

Hash Keys for performance 
improvement 

An elegant way to solve this issue is by using a hash algorithm to calculate the 

unique meaningless key from the business key. This algorithm can be implemented 

on all -distributed- systems so they can process the incoming data stream in 

parallel. An additional benefit of this approach is that even in traditional data 

warehouses a hash key can often be computed very efficiently thus reducing data 

load times. 

The theoretical problem with this approach is that there is an information overload 

in hash keys. Or, put differently- there exist a (very small) chance that the same 

meaningless key is computed for two different business keys. That would obviously 

result in a corrupted data warehouse. 

There is much debate on whether or not this theoretical chance is something to 

take into account in the design and implementation of a data warehouse. If one is 

concerned about this happening it is possible to implement simple queries that will 

detect this collision in the data warehouse and then devise corrective actions. 

As of version 3.1 QUIPU supports the use of hash keys as meaningless keys, for 

those that need it.  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 31 / 38 

 

Model extensions 

A typical data warehouse is 
constantly adapted to changes 
in the environment 

QUIPU can generate all scripts required to generate the data structures for the 

data warehouse: staging and data warehouse (source data vault of HDA, business 

data vault). QUIPU also generates the scripts that load the data warehouse from 

the staging area and even a starting point for loading the staging area from the 

source(s). 

The generated data warehouse can be loaded periodically with new data (typically 

daily), quickly building up potentially large volumes of data for reporting and 

analysis. 

In a typical environment at some point in time changes to the data warehouse need 

to be made. This can be caused by changes in business processes, business 

applications or (often) both. It can also be the result of different reporting and 

analysis requirements or the correction of flawed business rules. 

In all of these cases it may be necessary to make changes to the data warehouse 

data structures. The best possible model will then be found when re-generating the 

data models from scratch using QUIPU and the modified source model or 

enterprise data model. But this is not always the best approach, or even possible.  

Regeneration is a dead end 
alley 

The main disadvantage of the regeneration approach are: 

 even the simplest changes (like adding new data elements to existing 

tables) will lead to new tables to be generated, leaving 'dead' tables in the 

data warehouse: the outdated tables will no longer be refreshed. This 

means that all data marts (or reports directly accessing the data 

warehouse) relying on these old data structures will have to be modified, 

even when these reports do not now or ever require the newly added data 

elements. 

 new or modified data structures will be empty when recreated. In order to 

preserve previously loaded data a data migration script might be required 

to initialize the empty structures with data from now outdated structures. 

This step can be rather complex, labor-intensive and time intensive. 

 large data warehouses (in terms of complexity and data volumes) may 

require vast data migrations that will drive the cost for a change to levels 

that are inhibitive. In these cases the data warehouse becomes highly 

resistant to change, completely frustrating the business and defeating the 

original design goals of the data warehouse. 

Most real-life data warehouses reach the point that regeneration is no longer an 

option within about a year after initial go-life.  

Closed for change, open for 
extension 

The data warehouse must be flexible and changes should be implemented 

incrementally, limiting changes to existing structures to a minimum. By keeping 

data structures in tact (and 'live') whenever possible the impact of the change on 

the existing reporting and analysis applications is minimized. 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 32 / 38 

 

In short: the data warehouse should be closed for change but open for extension. 

For this reason QUIPU supports model extensions. Key feature of model 

extensions in QUIPU is the ability to lock tables (by default: all existing tables) so 

they will not be regenerated. QUIPU will then figure out how to complement the 

existing data vault with new structures to capture the changes.  

No data migration supported 
(yet)  

The current release of QUIPU does not support data migration. So the newly 

created data structured will be empty and must still be populated.  

Change types supported by 
QUIPU 

The following table shows the different type of changes that QUIPU currently 

supports, and how they are resolved.  

 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 33 / 38 

 

QUIPU TECHNOLOGY 

Client Server Architecture 

Internal structure QUIPU is internally structured with a strict separation between components and 

(front- and back-end) layers based on open interfacing standards in order to: 

 isolate the generic, data warehouse and data vault specific logic from the 

specific optimizations and implementation details of the technology used 

 allow concurrent development of new functionality 

 allow new technologies to be integrated and optimized (through add-in 

components like plugins, external libraries etc.) 

 

Thin client concept QUIPU has been designed with a thin client in mind. This means all core functions 

are implemented in the backend, and the client only implements the GUI 

component of the application.  

Template based generation The generation of DDL and ETL code is template based. This allows QUIPU to 

generate optimized code for a great variety of target (database) systems. The 

standard templates produce ANSI SQL code that will run unchanged on many 

RDBMS systems. For some database systems optimized templates are available.  

Back-end: Groovy / Grails 

Java Virtual Machine A key technology decision for QUIPU is to have the backend implemented on the 

Java Virtual Machine. 

The Java Virtual Machine that executes the Java (and Groovy) code is the premier 

platform for portable applications (that will run on almost any hardware platform 



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 34 / 38 

 

and operating system) and is also well known for its capabilities for web 

applications. 

Running the QUIPU backend on the Java Virtual Machine assures that this key 

component of QUIPU can run in all conceivable technical platforms, from stand-

alone pc's to enterprise server environments. 

The latter is specifically relevant as for more advanced implementations 

production systems need direct access to the QUIPU backend. The QUIPU 

backend must then be able to run in the same protected environment as these 

production systems.  

Groovy programming 
language 

The drive to develop Groovy comes from the perception that Java is not so very 

productive due to the enormous (coding) overhead it requires for very mundane 

tasks. Groovy is much more permissive and requires much less code to achieve 

the same functionality.  

Grails Framework GRAILS stands for Groovy on Rails and borrows a lot of the concepts and 

mechanisms of the well-known Ruby on Rails environment. Grails is a framework 

that bundles a number of key Java libraries and puts convention over 

configuration. 

Groovy -as programming language- allows the programmer to build nearly all 

perceivable functionality. But of course that would require a lot of time and effort. 

For many generic tasks Java libraries have been built and many of those are in the 

public domain. Grails has selected and bundled a number of these (e.g. Hibernate 

to interact with databases, or Spring to generate some basic GUI functionality) 

into the Grails package. A common problem associated with the use of such 

libraries is the need to configure them correctly. The more powerful the package, 

the more options can be configured in configuration files and the more difficult it 

becomes to make them work. 

Grails solves this problem by pre-configuring the libraries to assume the 

programmer adheres to a set of well described conventions . These conventions 

consist of rules on how to structure the code (in files) and where to put them (a set 

of directories with a specific purpose each) as well as naming conventions. When 

the programmer adheres to these conventions virtually all need to configure the 

libraries is removed. Of course, the configuration files are still available to the 

programmer if certain -default- behavior needs to be tweaked.  

Front-end: C# / .Net 

Thin C# client The front-end for QUIPU has been developed in C#, and requires the Microsoft 

.NET runtime modules to be installed on a pc with Windows installed. The front-

end has deliberately been kept as thin as possible, so most functionality of QUIPU 

is implemented in the back-end. Front-end and back-end communicate through 

standard http calls. This makes it entirely feasible to develop alternative front-ends 

(e.g. using AJAX, Silverlight, etc.) or complimentary front-ends (e.g. scripting 

certain processes to execute without interaction).  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 35 / 38 

 

Database support 

Broad RDBMS support for 
Quipu Repository 

QUIPU stores all the information it manages in a (relational, 3NF) repository. This 

repository can exist in a very large number of database management systems 

(courtesy of Hibernate). See Hibernate documentation for a list of all supported 

databases and versions. 

This broad support of database systems allows the QUIPU repository to be 

installed in the target database environment, which is required for the (future) 

monitoring and scheduling functionality. QUIPU configures itself upon installation: 

only an empty database needs to exist with a valid connection and proper 

authorization. QUIPU will then automatically create an empty repository. 

'Out of the box' QUIPU contains a file based RDBMS (HSQLDB) so no separate 

RDBMS is required to install and run QUIPU.  

QUIPU deployment options 

Standalone / Prototyping 
setup 

In this minimal scenario QUIPU front-end and back-end are installed on the same 

machine (PC). QUIPU is used to generate the DDL scripts and ETL scripts that 

can be copy-pasted into any text editor. Scripts are available for bulk export . 

For each physical data model (schema) a script file will be generated that will 

create or fill the entire model. 

 

It is up to the architect to deploy these scripts in the production environment, to 

create the DW structures and then fill these structures with data.  

Integration in server 
environment 

A more advanced option is to install the QUIPU back-end on a machine that can 

be -reliably and securely- accessed by the process scheduling and monitoring tool 

(often a component of the ETL software).  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 36 / 38 

 

 

In this setup it is possible for the ETL software to access individual ETL step 

generated by QUIPU and execute them separately. This allows for more 

elaborate monitoring and exception handling. 

The setup can be made fully generic, so few or no modifications are required in the 

process scheduling and monitoring setup are required when new version of the 

ETL are generated by QUIPU. 

This setup has been successfully deployed in combination with Microsoft SQL 

Server Integration Services (SSIS) and open source Pentaho components (Data 

Integration, formally known as Kettle).  



QUIPU v3: Overview 

 
 

 
Version 1.0  -  Draft 37 / 38 

 

MORE INFORMATION 

About QOSQO 

Our services QOSQO is founded in 2008 as a sister company of Nippur (founded in 2002). 

QOSQO is the leading company behind QUIPU, and provides data warehouse 

services for companies using QUIPU or other Data Vault modeled data 

warehouses.  

License model 

Subscription model QUIPU is licensed for a yearly fee, including product support and product 

updates. More information can be found on 

http://www.datawarehousemanagement.com.  



 

 

 

QOSQO BV 
Spoordonkseweg 7 5688 KB Oirschot, The Netherlands  

Phone: +31 (0)499 577 562 
E-mail: info@QOSQO.nl,  

http://www.QOSQO-services.com 
IBAN: NL72 ABNA 0421 6436 17 

http://www.qosqo-services.com/

