

WHITEPAPER
QUIPU version 1.1

OPEN SOURCE DATAWAREHOUSING

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 2 /34

Contents
Introduction .. 4

QUIPU .. 4

History ... 4

Data warehouse architecture ... 6

Starting points .. 6

Modeling .. 7

Core components of QUIPU .. 7

Enterprise DW Architecture .. 9

Data Vault... 11

Basics of the Data Vault .. 11

Hubs ... 11

Hub Satellites .. 12

Links .. 13

Link Satellites ...14

Reference tables ..14

Historical Data Archive ... 15

Model Generation ... 17

Data Vault Generation ... 17

Data Vault generation step 1: Import model .. 18

Data Vault generation step 2: Generate Data Vault proposal ('Analyze staging') .. 18

Data Vault generation step 3: Evaluate and modify generated Data Vault proposal ('Prepare staging') 20

Data Vault generation step 4: Regenerate Data Vault proposal ... 21

Data Vault generation step 5: Modify / add metadata .. 22

Script generation ... 22

QUIPU Technology ... 25

Client Server Architectuur ... 25

Back-end: Groovy / Grails ... 26

Front-end: C# / .Net ... 26

Database support .. 27

QUIPU deployment options.. 27

Future developments.. 29

QUIPU OS functionality ... 29

Commercial modules .. 29

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 3 /34

More information .. 33

About QOSQO ... 33

Licence model .. 33

Source code availability ... 33

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 4 /34

Introduction

QUIPU

This Document is not a
manual

This document delivers some background information on QUIPU, the Open Source data ware-

house generation software developed by QOSQO. It aims at creating understanding of the posi-

tion of QUIPU in the BI landscape and development cycle. It is not a manual, and does not replace

release notes. The document may not always be 100% in sync with the latest release of the soft-

ware, so please refer to the release notes for definitive information.

Version 1.1 release provides
only core functionality

The Version 1.0 release of QUIPU offered only a subset of all the functions and features we think

are essential, important or just pretty cool to have in such a product. But still we feel this release has

proven to be a time saver for many data warehouse architects and has assisted them in developing

reliable data warehouses based on solid modeling principles.

In the course of the first year after its original release in July 2010 several upgrades have been

made to bring the current version to 1.1. These developments have added some important features

to QUIPU and also affected some of the views expressed in this document. Hence an update to

the whitepaper.

Open Source After the initial release of QUIPU in the Open Source, QUIPU has found its way to its intended

users and organizations small and large many of which have reported to benefit from it. We con-

tinue to invite the feedback from the user community, as it will be the basis for further development

from our side. We may have already recognized the need for certain features, but we would love

to be surprised with unexpected use cases that require features currently not present.

Community We also hope and expect that gifted developers will step forward and pick up some of the work,

willing to share with the world. We will actively support any developer that wishes to contribute

with documentation and guidance. More information to this can be found in the user documenta-

tion or on sourceforge (http://sourceforge.net/projects/quipu/)

Commercial modules In the past year it became apparent that more advanced functionality is required to satisfy the

needs of our larger customers. We have decided to develop some of these functions as paid mod-

ules to complement the core functionality in the Open Source application. This paper describes

changes to the basic architecture of QUIPU to allow add-on modules and explains what type of

future developments will remain Open Source and what functionality we will develop as commer-

cial modules.

Work in progress Clearly the product is not finished. This document too should be considered as 'work in progress'.

Expect frequent updates of the software and this document, as we implement new features and fix

bugs found in active use.

History

Data Vault modeling Consultants of our sister company Nippur as well as from QOSQO have been actively participat-

ing in data warehouse and business intelligence projects for many years. They have contributed or

managed projects with large multinational companies based in the Netherlands as well as abroad.

They have used the Data Vault modeling technique for many years now as best practice for mod-

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 5 /34

eling data in a way that fits business needs best.

From best practice to soft-
ware development

The Data Vault model is particularly strong in ensuring lineage of data warehouse data back to

their source systems, thus enabling a complete audit trail. At the same time the Data Vault model is

very easy to adapt to changing requirements and extremely scalable. The strong architectural

foundation of Data Vault and the simplicity of its design open the way to automation. Our consult-

ants have created quite a few customer specific generator scripts to create and populate a data

warehouse.

Early automation efforts In some cases we created tailor-made fully automated data warehouse management solutions.

Complete source and target models, ETL code specifications, scheduling and documentation are

managed and maintained using a single repository. Our lead architect of QUIPU was involved in

the design and realization of one such effort of a large Netherlands based Bank / Insurance com-

pany, which started around 2001 . Currently, QOSQO is responsible for the support of this soft-

ware.

Development of QUIPU This specific solution, combined with our best practices at other customers sparked the idea to

develop a data warehouse management software solution back in 2008.

QUIPU: an ancient Inca
recording device

The Quipu or khipu (sometimes called talking knots) was a recording device used in the Inca Em-

pire and its predecessor societies in the Andean region. A quipu usually consisted of colored spun

and plied thread or strings from llama or alpaca hair. It could also be made of cotton cords. The

cords contained numeric and other values encoded by knots in a base ten positional system. Qui-

pus might have just a few or up to 2,000 cords.

Quipucamayocs (Quechua khipu kamayuq, "khipu-authority"), the accountants of Tawantinsuyu,

created and deciphered the quipu knots. Quipucamayocs could carry out basic arithmetic opera-

tions such as addition, subtraction, multiplication and division. They kept track of mita, a form of

taxation. The Quipucamayocs also tracked the type of labor being performed, maintained a rec-

ord of economic output, and ran a census that counted everyone from infants to "old blind men

over 80." The system was also used to keep track of the calendar.

[source and images: wikipedia,http://en.wikipedia.org/wiki/quipu]

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 6 /34

Data warehouse architecture

Starting points

Layered data warehouse
architecture

'Classic' data warehouse (DW) architectures consist of several layers. The first one is the source

layer, representing the data to be used for reporting and analysis (business intelligence) purposes.

The second layer is the actual data warehouse where selected (or in rare cases: all) source data is

offloaded from source systems and collected in the 'memory' of the organization. Subsets of data

are then created to satisfy needs of specific functional areas or domains in the third layer. This layer

is called the data mart layer. The fourth layer presents the relevant information to end users, the

presentation layer.

QUIPU generates models
and load code

QUIPU aims at fulfilling the generic core components in the data warehouse and data mart layers

of the architecture. It is particularly strong in generating, maintaining and populating (database)

structures to store historical data, both transactional data and reference data. Apart from the data

structures QUIPU also generates the (SQL) code to load the data correctly in the data ware-

house. QUIPU is designed to operate in a multitude of environments.

.

NOTE: QUIPU generates the basis Data Vault structures and ETL to load the data. QUIPU does NOT provide a solution to the

business rules that are often required to integrate data from different sources or derive performance indicators from the 'raw' trans-

action data. As such QUIPU does not replace ETL tooling or rules engines but rather complements them.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 7 /34

Modeling

Data Vault - efficient, ex-
pandable historical record

QUIPU is based on the Data Vault model. See http://danlinstedt.com/about/ for more infor-

mation and background.

The key strengths of this model are:

 it allows capturing an historical record of any data ('transaction' as well as 'master' data)

 it is optimized for (near) real-time updates (allows massive parallel processing, late arriving

transactions etc.)

 it isolates changes in the model and is thus flexible (can be adapted to changing business

needs with relative ease)

Reasons for a Data Mart
layer

QUIPU typically creates more tables than the original 'point-in-time' 3NF source models. As such

it creates a model quite opposite of a star-schema and not particularly strong in query- perfor-

mance on the dominant RDBMS systems (Oracle, MS SQLServer, DB2, MySQL, etc.).

This is the technical reason why on most platforms a Data Mart layer is required.

The data is stored in 'raw' (source) format in the data warehouse, so all of the original data is avail-

able. This raw format of the data is good for operational reporting, but not optimal for other report-

ing and analysis purposes, as there are no derived data (e.g. KPI's) available and integration of data

from different sources can be hard.

This is the business reason for creating datamarts.

Summarizing: the Data Mart layer contains a subset of the data and is optimized for query perfor-

mance: data is integrated, aggregated and pre-calculated, often stored in a star-schema.

Core components of QUIPU

No business rules in QUI-
PU

As QUIPU's added value lies with the generic modules, it implies all solution specific modules

(mainly the data transformations that may be required) will have to be realized outside of the QUI-

PU product.

In most situations:

 the raw source data is not fit to fulfil the needs of the business. Sometimes complex business

rules are required to integrate data from different sources (e.g. match external customer or

supplier data to internal data structures).

 hierarchies are added to the source data structures, and complex KPI's are calculated for

different levels of the hierarchy.

All of these derivations need to be implemented outside QUIPU, either using ETL tools or BI front-

end tools.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 8 /34

Business Data Warehouse In its most basic form QUIPU controls a single, integrated data warehouse based on a single,

harmonized business model. The business model provided to QUIPU can be completely time-

variant -capturing changing reference data- and thus describe the business entities and their rela-

tions as they are defined at any point in time.

Business Data Warehouse

3NF business data model The business data model should be in 3NF (third normal form) and can be created using one of

many database modeling tools. The business model cannot be imported in QUIPU directly (in the

current version). The easiest way to get the business data model into QUIPU is by physically im-

plementing the -empty- database in one of the many RDBMS'es supported by QUIPU and using

QUIPU's reverse engineering function.

Once the model is available in QUIPU, the following functions are available:

Generate Staging area  Generate Staging area. The source data will have to be delivered in a format that is more or

less dictated by the business model into a staging area. The tables are generated by QUIPU,

as well as template SQL statements that can fill the staging area from the source tables -

assuming these tables exist physically in the same RDBMS system-. It is the task of an external

ETL tool to load the data in the staging area if the source does not exist in this exact form or

lives in a different database platform.

Generate Data Vault model  Generate Data Vault model. A simple straightforward translation will be generated through

analyzing the source model's tables, keys and relations. This model can be optimized through

direct interactive manipulation (or in future versions via export and import functions).

Generate Load functions  Generate Load Functions. The data delivered into the staging area are loaded into the Data

Vault tables. Extensive validation and logging assures that the data warehouse always retains

a valid state. All data elements in a load are marked with a unique load id (or alternatively a

source id and timestamp), allowing various housekeeping functions on the data loaded (e.g.

archiving data or removing faulty loads). QUIPU also generates code to load the staging ar-

ea, but this should be regarded as demo code as in practice the staging area is often loaded

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 9 /34

directly from the source systems. Generation is based on templates that can be adapted to

exploit the features of various database management systems.

Generate views  Generate various views on the Data Vault. As a first step towards supporting BI, QUIPU

generates views that reproduce the 3NF source model (thus hiding all the complexities of the

Data Vault) for query purposes. As the Data Vault stores historical data that may not be pre-

sent in the original 3NF model some views deliver the data as it currently is available in the
source (current values). A sample query is also provided, that demonstrates how a a specific

time and date can be specified so the data warehouse can provide the exact data that was

available in the source at that specific moment (a 'point-in-time view).

NOTE: Data Marts are required to deliver data to the business. Functionality to assist the construction of Data Marts is

not yet available in the Version 1.1 release of QUIPU, but currently in Beta, and scheduled to be released as part of Ver-

sion 1.2.

Enterprise DW Architecture

Enterprise Requirements QUIPU is designed to support the Enterprise Data Warehouse concept. It can certainly be used in

less complex environments but is designed with the requirements of larger enterprises in mind.

Thus, it is capable of capturing and integrating information simultaneously from multiple sources

and scaling to large data volumes.

BI stack QUIPU can integrate with Open Source or commercial products, to offer a complete solution.

The solution then includes a modeling tool, ETL and a BI front-end stack.

Near-real-time QUIPU is aware of the shifting role of the DW in today's businesses. More and more the DW is

considered a key component in the information architecture, supporting not only the strategic

information requirements of senior management, but also the tactical and even operational re-

quirements at the shop floor. The latter require frequent data updates (near real-time).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 10 /34

Extended DW Architecture

Implement a multi-layered
version

With QUIPU it is possible to implement a multi-layered version of the Data Vault.

Thus QUIPU supports the creation of data marts on the Business Data Vault, but also directly on

the Source Data Vault.

'Source Data Warehouse' The 'raw' source data is captured in a 'source Data Warehouse'. These are generated as Data

Vaults and are directly derived from the (logical) data models of the sources. They are ideal for

operational, single-source reporting and analysis.

Where business keys can be recognized they can be the first step towards building the 'business

Data Warehouse' as they can bridge data from multiple source systems.

In QUIPU hubs are separated physically and logically. This means shared hubs need to be created

virtually, by defining views over multiple physical hubs. Future versions of QUIPU will support

shared hubs more transparently.

'Business Data Warehouse' The business needs a unified model to report from: the 'business Data Warehouse'. It is built for

integrated, business wide reporting and analysis.

The Business Data Warehouse complements the data in the Source Data Warehouse with inte-

grated data (through cleansing and mapping algorithms) and derived data (calculated using busi-

ness rules). It is based on a consistent data model, specifically designed to support the business.

In most cases the integration requires mapping of business keys and transformation of the source

data. Although it would be possible to distribute the transformed data directly into data marts, this

is often not desirable:

 if the transformed data is considered business data in its own right: even when the transfor-

mation rules change, the data needs to remain available as it was historically derived (trans-

formed).

 if transformations need to be implemented only once in order to safe-guard consistency. It

can be difficult to enforce that the same business rule is correctly applied when building mul-

tiple data marts. It is often much easier to achieve consistency when the result is stored in a

second Data Warehouse layer: the Business Data Warehouse.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 11 /34

Data Vault

Basics of the Data Vault

The Data Vault concept has been developed by Dan Linstedt. A good starting point for learning more on the Data Vault

is the dedicated wiki page http://en.wikipedia.org/wiki/Data_Vault_Modeling.

The Data Vault structure consists of three basic table types: Hubs, Links and Satellites. To satisfy specific requirements

QUIPU additionally supports Reference tables.

Hubs

List of business keys Hubs contain a simple list of business keys. They must be meaningful for the business and uniquely
identify an entity (or object) recognized by the business (like customer, product, supplier, invoice,

etc.).

Sometimes -ideally- these business keys can be found in source systems as primary keys in data-

bases, or unique indices.

The business keys - and thus the hubs- are the anchor points of the entire model!

Business keys must be
unique

It is important to stress the requirement for global and historical uniqueness of the business key.

This means that the business key should not be used in different parts of the company to mean

different things (often the case in larger organizations, where e.g. different customers with the

same key may be created in different countries).

It also means business keys should never be reused (often seen in older systems, where a limited

set of keys is re-used after a certain period of time). In both cases the Data Vault will treat the data

it stores from these different business entities a belonging to the same entity. This will confuse users

of the data warehouse, as it probably confuses the business in the operational processes.

So it is extremely important to find and analyze the business keys before constructing the Data

Vault. Analysis should include inspection of source data (data profiling) and verification with busi-

ness domain experts.

Inserts only The hub does not contain any other business data. As the business keys themselves do not change,

the hub is not timevariant. Records will never ever be updated or deleted. The table will only see

record insertions (which guarantees a very efficient loading process).

Hub structure The hubs contain:

 the business key

 the source system that first reported the business key to the data warehouse

 the timestamp when it was first recorded

http://en.wikipedia.org/wiki/Data_Vault_Modeling

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 12 /34

 optionally a meaningless id (may perform better when business keys are compounded

and/or very large)

 some technical fields (like the meaningless ID generated by the data warehouse if chosen

and an audit id identifying the process that created the record).

Hub Satellites

At least one satellite per
hub per source

When the hub only contains the business keys, the relevant data belonging to a business key is

stored in the satellites. Each hub has at least one satellite that records at least the business validity

of the business key.

As a principle a separate satellite for each source system should be created, recording the data

that this specific source holds on the business key, over time. Each of these satellites contains the

'voided' attribute, that indicates the business key is no longer valid in a particular source system.

Source system clones can
feed into a single satellite

Generally a single implementation of a transaction system should be considered a source system.

So an organization that has implemented an ERP system for each of its division should consider

each as a separate source.

However, under certain conditions it may be possible -and then often also desirable- to consider

multiple transaction systems as a single source. This is the case when:

 all systems share the same logical and technical (data) design (multiple clones of the same

system)

 master data management is implemented across all systems, assuring business keys are

uniquely defined and shared across all systems.

Under these conditions all systems can feed into the same source Data Vault, possible greatly

reducing the number of tables and load processes and at the same time simplifying querying the

data.

Still one needs to realize that this simplification may come at a price. For example parallel loading

from multiple source systems becomes more complex or even impossible. There are very likely to

be other consequences.

At least one record per
business key

In this minimal case the satellite would only contain technical fields, and minimally a single record

per business key that is known by this source (creation/first seen).

When the business key is deleted in the source another record is inserted indicating the business

key is no longer valid. This demonstrates that in the satellite the history is stacked: new data is rec-

orded by inserting new records with a Start Timestamp.

Hub entries can be gener-
ated from transaction tables

Ideally hub entries (Business Keys) are generated when a source table is loaded containing the

master data on this Business Key, before the transactions are processed. Thus, the information on

the BK is available when transactions arrive.

This can not always be guaranteed, mostly because of timing issues (e.g. master data may be load-

ed only once a day, whereas transactions are loaded as they arrive during the day).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 13 /34

In the Data Vault this is not an issue, as the Hub will be updated when the transaction arrives. The

corresponding record in the hub-satellite will be absent until the master data is loaded.

All relevant data elements
of a business key

Normally there is more interesting data available on business key. The relevant source data ele-

ments are all stored in one or more satellites. By default for each source table containing data

related to a business key a separate satellite will be created. This keeps the model close to the

source model and facilitates load procedures.

Inserts Only As changes in the source data are recorded in new entries in the satellites also this table can be

refreshed with only insert statements.

End-dating Although logically not required, for performance reasons on specific database management sys-

tems it may be necessary to end-date a record when a new record is created in the satellite. An

additional End Timestamp can be generated. This is the only reason for a record to be updated in

the satellite.

Satellite Structure The satellites contain:

 the unique key of the hub it refers to (either the business key or meaningless id)

 the 'start' timestamp: from what time is the data valid (usually the data was recorded in the

data warehouse)

 optionally an 'end' timestamp: until what time is the data valid.

 the source system that delivered the data to the data warehouse

 some technical fields (like the audit id identifying the process that created the record, the

voided flag that marks the data as deleted in the source).

Links

Links record relations be-
tween business keys

Business entities interact in many ways, and these interactions are reflected in (logical) relations

between business keys in source systems. In the Data Vault these relations are recorded in Link

tables.

Examples of these relations are all kind of structures and classifications in the master data (e.g.

chart of accounts, product structure, organizational structure, customer classifications, etc.) and of

course the facts registered in the source (e.g. a sale of a product to a customer by a sales repre-

sentative on a specific date).

Similar to the hub the link table only contains the business keys or meaningless id's, when these are

preferred. All data linked to the relation are stored in a satellite table (link satellite).

Link structure The link contains:

 the unique key of the hubs it refers to (either the business key or meaningless id): at least 2.

 the timestamp: when was the data recorded in the data warehouse

 the source system that first reported the relation to the data warehouse

 some technical fields (like the audit id identifying the process that created the record).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 14 /34

Link Satellites

Similar to Hub satellites Link satellites share all the characteristics of a hub satellite.

The difference is that a link satellite contains data describing a relationship. For links between

master data elements (e.g. the organizational structure) these satellites contain little or no data and

provide only information on the validity of the relationship.

But when facts are registered in the relation (e.g. a sale) the link satellite will contain all the details

of the fact (e.g. number of products sold, the unit price, total value, etc.)

Reference tables

Reference tables can lead
to an excessive number of
links

A reference table is generally speaking a very simple, rather static table that is often referenced

from many other tables. It is often used in source systems to define a restricted value set (domain)

for a certain attribute. E.g. the list of currencies, countries, colors available for a product, etc.

By default (and following strict Data Vault modeling principles) a hub and satellite are created for

each of these tables, as well as link tables to all hubs that reference these tables.

Querying these tables can then become rather complex, as in all cases the satellites of the refer-

ence tables need to be joined in (via the link tables) when the current value is requested for a given

business key.

Also the model can become more cluttered due to the abundance of link tables that are generat-

ed.

Links are not generated for
reference tables

To alleviate this problem it is possible to mark a source table as a reference table. The result is that

a hub and satellite will be created for the reference table as normal, but no link tables between the

reference hub and the referring hubs are generated.

Joins to reference tables
must be added in the que-
ries

The reference to the reference table must of course still be stored somewhere. This is now a func-

tion of the satellite of the referring entity.

Of course the data mart architect will have to understand what reference tables exist, and create

the appropriate joins in his queries.

History is kept for reference
tables

In the QUIPU implementation of reference tables, with a 'regular' hub and hub-satellite all history

of (changes to) the reference table are kept. A further simplification would be to simply overwrite

changes to the reference table, as they are very likely to occur only sporadically. Of course drop-

ping history violates a basic concept of the data warehouse (always store all history) and potentially

poses an auditing risk.

Reference tables without history are not (directly) supported by QUIPU.

Caution: use with care. The Reference table feature should be used with proper caution, as it breaks one of the key as-

pects of the Data Vault. In a strict Data Vault all relations are modeled as links. This makes it extremely easy to assess the

impact of change. The existence of references from satellites to the hubs of reference tables breaks with this concept.

This means changes to reference tables can impact a larger part of the Data Vault model.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 15 /34

Historical Data Archive

'Informal' business keys In our practice working with Data Vault models for our clients we have learned that is not always

practical or even possible to identify the 'true business key' for all business objects. Many systems

work internally on technical keys. Business keys are often available, but seldom guarded as vigor-

ously as the technical keys. This leads to a variety of data quality issues with these 'informal' busi-

ness keys.

There may be any or all of the following problems:

 missing keys (no entry)

 duplicate keys for different objects (e.g. due to re-use of keys)

 multiple keys for the same object (e.g. due to spelling faults)

 missing keys in the master data system (new keys are entered in slave systems)

 expired keys in slave systems

Bad business keys break
business processes

Problems with business keys are a problem in operations, as it introduces ambiguity in the business

processes. The resulting confusion is the cause of many inefficiencies in the business.

Bad business keys lead to
inconsistent BI

But apart from that they seriously reduce the capability of BI to produce reliable integrated reports

spanning multiple systems and processes. Reports on the same business facts from different sys-

tems will produce different results!

Master Data Management
is a pre-requisite

Master Data Management practices need to be introduced and enforced to tackle these prob-

lems. In most cases that will mean operational procedures and systems need to be adapted and

possibly a dedicated MDM system needs to be implemented.

The business cannot wait for such efforts to bear fruit before they can get access to their vital man-

agement information.

Historical Data Archive
(HDA) built on technical
keys

What can be done when business keys are not available? The next best thing is to store the histori-

cal data linked to the technical keys of the sources. This at least assures that a true record of the

historical changes of the source can be kept.

This can easily be achieved using QUIPU, by simply following the default process. When QUIPU

analyzes a source model it will always look for business keys as primary keys or unique indices of

the source tables. If it finds such a key it will suggest to use this key as the business key. Of course

in practice it often is a technical key, not a business key.

Risk: Disconnected source
Data Vaults

In the most extreme case (where all source systems have only disconnected technical keys) this

approach results in a set of disconnected source data vaults, one for each source.

The value of a hub in this environment can be disputed, as the primary role of the hub is to serve as

a connection point between systems/processes. When a hub contains technical keys that are only

known in a single system this value evaporates.

HDA: satellites only It is therefore logical to dispel the the hubs (and links) and only implement satellites.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 16 /34

The resulting environment is of course no longer a Data Vault, but is sometimes known as a Histor-

ical Data Archive (HDA). You could also label it as a Persistent Staging Area.

Historical Data Archive

Building the Data Ware-
house on the HDA

The advantage of implementing the HDA akin to Data Vault satellites is that is still possible to later

find/define the true business keys and then start building a 'Data Vault'-like data warehouse by

adding hubs and links. In some cases it may be possible to link these new hubs directly to the exist-

ing satellites.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 17 /34

Model Generation

Data Vault Generation

Five steps to Data Vault
generation

The generation of a Data Vault from a source system follows a five step approach:

 Import or reverse engineer a source model, generating the staging area as a (near) 1 to 1 copy

 Generate a Data Vault proposal from analysis of the staging model

 Evaluate the result and influence the generation process by:

 (Re-)Define the business keys

 (Re-)Define the relations between source tables

 Ignore source columns that contain invalid or irrelevant data

 Regenerate the Data Vault model

 Final customization

 Rename tables and/or columns if required to get an easier to understand model and

add meta data to document the model

 Split satellites, move attributes between satellites to group logically related attrib-

utes and/or separate frequently updated attributes from more static attributes

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 18 /34

Data Vault generation step 1: Import model

Reverse engineer RDBMS Reverse engineering is supported for a large number of relational database servers and file based

'databases' (Excel, XML, CSV, etc.). Requirements are:

 availability of a JDBC connector

 a connection between the QUIPU back-end and the database (or file) server

 sufficient rights to read the database catalog.

The reverse engineer module will import tables, columns, relationships and indices.

No direct support for data-
base modeling tools

Direct import of the model from a database modeling tool (e.g. ERWin) is currently not supported.

The easiest way to transfer a model from such a tool to QUIPU is via generating a DDL script in

the tool and using it to create a dummy database in any of the many supported database systems.

This database can then be reverse engineered by QUIPU.

Data Vault generation step 2: Generate Data Vault proposal ('Analyze staging')

Rule based generation The Data Vault is generated from the source model based on a fixed decision tree implemented in

the code.

The first rule is that the table must have a unique key. It consists of a single or multiple columns.

And a each column can contain a technical or business key. If a unique key does not exist, the table

is ignored.

Further rules:

A source table is a Hub unless proven otherwise: the general principle in the generation of the

Data Vault is that all tables in the source become hubs, unless it can be determined (using a set of

rules) that the table should be treated as a link or satellite table. This is generally the case when the

principles ruling the Data Vault can be recognized in the source system.

A clear example is the many-to-many tables found in most relational systems that register transac-

tions (e.g. a sale may be registered in a table with as primary key a reference to the product table,

the customer table and a timestamp). Such a table should be recognized and translated to link and

link satellite construction.

Analysis options It happens that one (or more) of the business keys in a table is not a real business key. For instance:

a table contains data with a business key and extra date column as its unique key. Strictly speaking,

such tables should translate into link-satellites, with the extra (in this case: date) column represent-

ing a second Business Key placed in its own Hub. But often these extra columns have little business

value and are NOT linking pins to other parts of the data model. The resulting Data Vault is then

overly complex and hard to query.

QUIPU offers two distinct options to prevent this situation:

Multi-active satellite: Allow creating satellites with a different cardinality then its hub. The table is

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 19 /34

mapped to a satellite on the hub, but the satellite contains the extra key field(s).

Allow peg legged links: Allow links that link only to one hub. Now the extra key field(s) are in the

link table, as one would expect, but the corresponding hub is not implemented. All data on this link

is kept in a link-satellite. See http://en.wikipedia.org/wiki/Data_Vault_Modeling for more infor-

mation.

Log of the results of the
decision tree

The result of evaluation of each node in the decision tree is recorded in a log file and is shown in

the GUI. This allows the architect to evaluate the results and make the necessary changes to the

source model to arrive to the desired result within the limits of the decision tree.

And of course that also enables a qualified software engineer to modify the QUIPU source code

to implement the desired behavior.

Business keys derived from
primary or alternate keys

The Data Vault decision tree uses a primary key or unique index constraint to find the candidates

for business keys.

In many cases the primary key is a simple code that is actually meaningful to the business, provid-

ing a natural business key.

The source system may use meaningless keys, however, that have little or no value to the business.

The real business key is then often defined as an alternate key and/or a unique index is defined on

the real business key.

Source system blues QUIPU will always create a Data Vault that is technically correct. It will however not always be the

most efficient model, nor will it always be the model that you would like to have.

The reason for this is that the optimal Data Vault model can not be derived by analyzing the source

system structure as it is registered in the catalog of the RDBMS.

There are plenty of potential problems, including but not limited to:

 Many source systems are implemented without foreign key relationships guarded by the

RDBMS. The database consistency is then assured by rules in the software. Without foreign

key relations, it is not possible for QUIPU to create link tables. NOTE: these links can be

added manually in QUIPU to aid automated generation.

 Table and column names in the source may be generated, or for other reasons be impossible

to interpret

 Tables are often 'overloaded'. Multiple logical entities are mapped into a single table.

 Example 1: A column in the table indicates to what entity the row belongs. This is often

found in source systems as implementation for reference tables, consisting of a code

and description.

 Example 2: Table are not fully normalized, so a 'parent' table (e.g. product group) is

redundantly stored in a 'child' table (e.g. product)..

 Columns may be used for other purposes then their names imply

 Logical entities may be split over multiple physical tables (e.g. transaction per month)

All of these issues (and many more) will lead to the generation of a sub-optimal Data Vault. Issues

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 20 /34

related to the structure can -within limits- be resolved within QUIPU by creating or modifying

relations, renaming tables and columns, defining business keys. But issues related to the contents
of tables (like overloading) cannot currently be resolved by QUIPU. If you want to resolve these,

you will have to create some ETL to split or combine the physical tables and find a way to offer the

logical 3NF model to QUIPU (e.g. by creating a dummy database with the correct structure).

Data Warehouse Architect
is in control

Ultimately the data warehouse architect needs to check the result of the Data Vault generation

process and manually intervene if necessary.

NOTE: The initial release for QUIPU will generate a separate Data Vault for each source model offered. So QUIPU

will not integrate different source model into a single, linked Data Vault.

Data Vault generation step 3: Evaluate and modify generated Data Vault proposal ('Prepare

staging')

Including / Excluding col-
umns or tables

Specific tables and/or columns can be excluded from the generation process by setting them to

'Ignore'. This is particularly important when generating a source data warehouse from a source

that contains tables or columns that are not used (properly) by the business.

History By default all columns are set to track history after generating the Data Vault. However for some

columns you might want to disable history tracking and include only the last provided data. This

may be the case for highly volatile, operational data (like process status-information), or on the

opposite side of the spectrum: for very stable, descriptive information (like the descriptive name for

organizations, equipment, etc.). In those cases you can be sure that people will only ever be inter-

ested in the actual values.

QUIPU allows switching history tracking off for particular columns.

NOTE: switching off history breaks the Data Vault. You will no longer have a full audit trail for this

data in your data warehouse. So use it wisely!

Adjusting the business key The QUIPU analysis routine may not always be able to correctly find the Business Key(s) from the

structural information it gets from reverse engineering the database. You can add and remove

columns to the business key to correct these situations.

Columns that are ignored cannot be part of the business key.

Every table needs to have a business key. If not the data vault generation process will automatically

set the table to “ignore”.

We don’t recommend using technical (or generated) columns as business keys. While this will

result in a technically correct Data Vault model, you can encounter problems when cre-

ating datamarts.

Reference tables A reference table is a table that will be included when generating a Data Vault, but all foreign key

relationships connected to this table will be ignored. This will result in a reduced amount of link

tables in the generated data vault. Tables can be marked as reference table in the QUIPU GUI.

Add / remove relationships QUIPU may not always get the correct relationships from the reverse engineering routine. These

relationships are essential to the Data Vault generation routine, as QUIPU will map them to hub-

satellites, links and/or link-satellites. It is therefor essential that QUIPU allows relations to be edit-

ed.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 21 /34

Each relationship should have a sensible, descriptive name, as this name is used when the relation-

ship is transformed to a link as the link name.

Relationship groups As a default QUIPU will generate a link table between 2 hubs for each relationship it finds. Very

often it is more sensible to combine several relationships into a single link table, linking multiple

hubs together.

This can be achieved by defining a 'Relationship group'.

Data Vault generation step 4: Regenerate Data Vault proposal

Implementation options When the logical model has been defined to satisfaction, it is time to start considering the -

physical- implementation options. These options have no impact on the data content of the data

warehouse, but may have an impact on the performance in a particular database system or affect

the possibilities for scheduling, monitoring and data maintenance tasks.

Model level implementation
options

Record source and timestamp: Choosing this option will add a record source and timestamp col-

umn to each table in the staging area (default).

Audit ID: Choosing this option will add an audit ID column to each table in the staging area. The

audit ID can point to a record in an audit table with record source and timestamp information, but

could also contain additional information about the loading process (e.g. on extraction date, # of

records in the export, operator, etc.).

NOTE: QUIPU will load these fields into the data warehouse for later reference, but will NOT fill these fields (in the generated ETL

code to load the staging area). Loading the staging area is outside the scope of QUIPU.

Model/Table level imple-
mentation options

Generate surrogate keys: QUIPU can provide each data vault hub and link with a generated

primary key (hub_id or link_id). Subsequently this key will be used in the relationships that connect

these tables to each other and to their satellites. When this option is disabled the business key of

the staging table will be used as primary key in the Datavault. Using generated keys can greatly

reduce the size of the data warehouse and improve query performance, especially when business

keys are multi-field and large (strings). It comes at a cost, however: loading the data warehouse

becomes (potentially a lot) slower, as all business keys need to be translated to the correct surro-

gate key. Queries may become harder to build and read, as the surrogate keys have no meaning

to the business.

Use end-dating: By default all satellites in the generated data vault will get an extra column called

“load_date” that will contain the date of inserting. This column is required and sufficient for keeping

the history. It is therefor mandatory and part of the primary key.

Retrieving the correct historical record from such a table may be difficult for a relational database:

a complex query may be required that could also perform badly. QUIPU offers the option to add

another column called “load_date_end” that can be used to line up all records in chronologic

order. This field will be filled when a new version of the record is entered in the database, thus

'closing' the previous record. It can be used to simply single out the correct record with a SQL

construct (load_date_start <= date < load_date_end).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 22 /34

Data Vault generation step 5: Modify / add metadata

Modify the generated Data
Vault

When the Data Vault is generated, there may be cause to modify some aspects; to simplify the

model or improve performance.

Split a satellite The fields in a satellite may not change at the same rate. Also, some fields may always change as a

set, not individually.

Example: An employee table may contain info on name, sex, date and place of birth and address

details. The personal identification attributes will (in general) never change. The address details

may change, but if they do the individual attributes (street, city) often change together.

This is a typical case where splitting the satellite could result in a better model: attributes that 'be-

long together' and 'change together' are placed in a separate satellite. This makes the model easier

to read and interpret when at the same time requiring less disk space and offering better perfor-

mance.

If you want to split a satellite, right-click on a satellite and select “split satellite” and give the new

satellite a descriptive unique name. This will create a new satellite with only system columns and

the business key. Now you can drag and drop data columns (from a satellite linked to the same hub

or link) into the new satellite. Quipu will take care of (re)creating mappings.

Merge satellites Sometimes it makes sense to combine multiple satellites in a single one. Thus, one can consolidate

information from multiple source tables in a single table in the data warehouse. The model be-

comes simpler at the (potential) cost of storage requirements.

NOTE: Combining satellites from different source systems is not recommended. Different source systems have very often different

characteristics in terms of completeness, correctness, timeliness etc. It is wise to store the data apart, so these characteristics can be

easily assigned to a complete satellite table in the data warehouse (as opposed to columns in a combined satellite).

Rename objects You can rename all tables and columns in QUIPU, so you can apply any naming convention. This

will never alter any mappings.

Script generation

Template based generation QUIPU uses templates to generate scripts to generate databases and load code. These templates

can be customized to support specific features of the various RDBMS's. So for each SQL dialect a

template could be provided. The initial release comes with a template for standard ANSI SQL 92

intermediate code. Additional templates will be released when they become available through

development at QOSQO or in the community.

DDL QUIPU generates Data Definition Language scripts to create:

 The staging area of the data warehouse

 The Data Vault area of the data warehouse

 3NF-views on the Data Vault (mimicking the original source model)

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 23 /34

ETL QUIPU generates the load code for the staging area and the Data Vault.

The staging area load code assumes that the source database is situated in the same RDBMS, and

the specified connection to this RDBMS has sufficient rights in the source database. This is of

course often not the case. In these situations the code may serve as a sample demonstrating the

logic to fill the staging area.

Delta vs Full Load The Data Vault load code implements a delta detection mechanism. This means the code will

function properly on both full data sets and delta data sets (only containing the changes in the

source), and you are not required to indicate whether you offer full or partial data sets.

The problem with delta data sets is that QUIPU will not be able to detect deletions in the source

(unless deleted records are marked by an attribute and offered in the delta set). This is the one and
only reason for QUIPU to offer an option indicating that the data set offered is a full data set: any
record not in the full data set is considered deleted from the source.

QUIPU will end-date the current satellite record(s) and create a new record marked as deleted.

Also, any hub-entry not found in the source will be marked as deleted.

Staging Load table In practice, delta and full loads are often required intermittently for a specific table. It is common

practice to process the smaller delta data sets on a daily basis, accepting that deletes are not rec-

orded. Once every week or month a full data set is processed to record the deletes that occurred

in this period.

To facilitate this practice QUIPU implements a special table in the staging area with a record for

each source table. The data warehouse manager can indicate for each source table whether a full

load or a partial load is required.

QUIPU generates code that will check this table and automatically perform the full or partial load

as specified in this table.

Splitting the load process It is possible to split the load process in multiple jobs. For instance in many cases it makes sense to

load the master data only once a day (with the full load option), but load the transaction data multi-

ple times a day (to get more actual data and prevent very large load jobs at the end of the day).

This works well, with the one consequence that for NEW master data only the business key will be

available until the all master data is refreshed.

All of this is not directly supported by QUIPU, but can be achieved by either splitting up the gen-

erated ETL scripts or building a scheduling solution that directly addresses the QUIPU repository.

Re-starting load jobs When the same data set is offered multiple times (either full or delta sets), no change will be found,

and thus no changes will be recorded in the Data Vault.

This means interrupted data loads can be restarted without any adverse affects.

All tables in a single export can be loaded in any particular order (and even in parallel), although it

makes sense to load master data before loading transaction data.

Please note that offering jobs out-of-order (older extracts after newer extracts) will cause incor-

rect results in the Data Vault!

NOTE: that the ETL scripts will only implement mapping from source tables to target tables. No transformations can be

specified.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 24 /34

End-dating There is an option in QUIPU to add end-dates to the satellites. The end-date allows simpler SQL

(and often: faster) queries on the Data Vault, using the SQL construct "WHERE load_date_start

<= point-in-time < load_date_end"

End-dating the satellites means that the each record in the satellite needs to be updated with the

start-date of a later record. If no later record exists, the end-date gets a date very far in the future

(31-12-9999).

End-dates can be updated when new entries arrive, but this slows down the data load processes,

which can be a problem in certain scenario's (e.g. for near-realtime updates for operational BI).

That is why QUIPU implements end-dating as a separate process that should be executed af-
ter loading the data.

Views Some views will be generated by QUIPU that will present an easier to interpret (and query) repre-

sentation of the Data Vault.

The views will come close to rebuilding the 3NF data model that was used for the Data Vault gen-

eration (unless manual interventions have changed the model).

As the Data Vault stores historical versions of all data, and the 3NF model in general does not, the

views will need a point-in-time to indicate which historical view is requested.

Standard views included are:

 the current status (using today as the point-in-time).

 the current status including all deleted data (using today as the point-in-time)

 the full historical record

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 25 /34

QUIPU Technology

Client Server Architectuur

Internal structure QUIPU is internally structured with a strict separation between components and (front- and back-

end) layers based on open interfacing standards in order to:

 isolate the generic, data warehouse and data vault specific logic from the specific optimiza-

tions and implementation details of the technology used

 allow concurrent development of new functionality

 allow new technologies to be integrated and optimized (through add-in components like

plugins, external libraries etc.)

Thin client concept QUIPU has been designed with a thin client in mind. This means all core functions are implement-

ed in the backend, and the client only implements the GUI component of the application.

Template based generation

The generation of DDL and ETL code is template based. This allows QUIPU to generate opti-

mized code for a great variety of target (database) systems. The standard templates produce

ANSI SQL code that will run unchanged on many RDBMS systems.

In the future optimized templates can be added to QUIPU. This is something we will turn to the

community of QUIPU users to co-develop and co-support, as the variety out there is overwhelm-

ing and it is impossible for us to set up test-environments for each.

In essence it is an open system allowing users to change or add templates.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 26 /34

Back-end: Groovy / Grails

Java Virtual Machine A key technology decision for QUIPU is to have the backend implemented on the Java Virtual

Machine.

The Java Virtual Machine that executes the Java (and Groovy) code is the premier platform for

portable applications (that will run on almost any hardware platform and operating system) and is

also well known for its capabilities for web applications.

Running the QUIPU backend on the Java Virtual Machine assures that this key component of

QUIPU can run in all conceivable technical platforms, from stand-alone pc's to enterprise server

environments.

The latter is specifically relevant as for more advanced implementations production systems need

direct access to the QUIPU backend. The QUIPU backend must then be able to run in the same

protected environment as these production systems.

Groovy programming lan-
guage

The drive to develop Groovy comes from the perception that Java is not so very productive due to

the enormous (coding) overhead it requires for very mundane tasks. Groovy is much more per-

missive and requires much less code to achieve the same functionality.

Grails Framework GRAILS stands for Groovy on Rails, and borrows a lot of the concepts and mechanisms of the well

known Ruby on Rails environment: a framework that bundles a number of key Java libraries and

puts convention over configuration.

Groovy -as programming language- allows the programmer to build nearly all perceivable func-

tionality. But of course that would require a lot of time and effort. For many generic tasks Java

libraries have been built and many of those are in the public domain. Grails has selected and bun-

dled a number of these (e.g. Hibernate to interact with databases, or Spring to generate some

basic GUI functionality) into the Grails package. A common problem associated with the use of

such libraries is the need to configure them correctly. The more powerful the package, the more

options can be configured in configuration files and the more difficult it becomes to make them

work.

Grails solves this problem by pre-configuring the libraries to assume the programmer adheres to a

set of well described conventions . These conventions consist of rules on how to structure the code

(in files) and where to put them (a set of directories with a specific purpose each) as well as naming

conventions. When the programmer adheres to these conventions virtually all need to configure

the libraries is removed. Of course, the configuration files are still available to the programmer if

certain -default- behavior needs to be tweaked.

Front-end: C# / .Net

Thin C# client The front-end for QUIPU has been developed in C#, and requires the Microsoft .NET runtime

modules to be installed on a pc with Windows installed. The front-end has deliberately been kept

as thin as possible, so most functionality of QUIPU is implemented in the back-end. Front-end and

back-end communicate through standard http calls. This makes it entirely feasible to develop

alternative front-ends (e.g. using AJAX, Silverlight, etc.) or complimentary front-ends (e.g. script-

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 27 /34

ing certain processes to execute without interaction).

Database support

Broad RDBMS support for
Quipu Repository

QUIPU stores all the information it manages in a (relational, 3NF) repository. This repository can

exist in a very large number of database management systems (courtesy of Hibernate). See Hiber-

nate documentation for a list of all supported databases and versions.

This broad support of database systems allows the QUIPU repository to be installed in the target

database environment, which is required for the (future) monitoring and scheduling functionality.

QUIPU configures itself upon installation: only an empty database needs to exist with a valid con-

nection and proper authorization. QUIPU will then automatically create an empty repository.

'Out of the box' QUIPU contains a file based RDBMS (HSQLDB) so no separate RDBMS is

required to install and run QUIPU.

QUIPU deployment options

Standalone / Prototyping
setup

In this minimal scenario QUIPU front-end and back-end are installed on the same machine (PC).

QUIPU is used to generate the DDL scripts and ETL scripts, that can be stored in .TXT files using

the Front-End.

For each physical datamodel (schema) a script file will be generated that wil create or fill the entire

model.

It is up to the architect to deploy these scripts in the production environment, to create the DW

structures and then fill these structures with data.

Integration in server envi-
ronment

A more advanced option is to install the QUIPU back-end on a machine that can be -reliably and

securely- accessed by the process scheduling and monitoring tool (often a component of the ETL

software).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 28 /34

In this setup it is possible for the ETL software to access individual ETL step generated by QUIPU

and execute them separately. This allows for more elaborate monitoring and exception handling.

The setup can be made fully generic, so few or no modifications are required in the process sched-

uling and monitoring setup are required when new version of the ETL are generated by QUIPU.

This setup has been successfully deployed in combination with Open Source Pentaho components

(Data Integration, formally known as Kettle).

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 29 /34

Future developments

QUIPU OS functionality

QUIPU remains generation
tool

The core function of QUIPU is the transformation of models (staging, Data Vault, data marts), the

automatic generation of these models, their mappings and the ETL code to move data through the

chain.

In the future the Open Source QUIPU tool will maintain this function, and the modeling capabili-

ties will continue to expand and improve to fulfill the needs of businesses today.

Fill the gaps There are certain key aspects of data warehouseing that are not fully supported as of yet. We will

strive to add these functions in future releases. At the top of our list are:

 support for shared hubs, allowing model integration

 generation of data marts, including:

 definition of shared dimensions and hierarchies

 definition of KPI's

QUIPU is primarily designed to support the Data Vault model, but is not restricted to the 'pure'

Data Vault.

QUIPU already supports some derivations of the Data Vault. In the end it is the responsibility of

the data warehouse architect to choose an appropriate model for the data warehouse and up to

QUIPU to optimally support this model.

Commercial modules

Deployment architecture
changes

The technical deployment architecture of QUIPU was redesigned, in order to support both Open

Source and Closed Source (commercial) modules in a single environment.

In the current release, QUIPU consists of a GUI module, built with C# on .NET, and a back-end

module built with Groovy on Grails. The latter is distributed as a .war package -that can be de-

ployed on web server- that communicates with the GUI via standard http calls.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 30 /34

In future release (as of version 2.0) another server component is distributed containing all closed

source modules. This component will implement a second web server, provides access to the

closed source functionality.

Thus all QUIPU users will have the exact same software stack installed on their machines. Access

to specific closed source modules will be based on a simple licensing mechanism.

The GUI module will contain all GUI functionality for both server modules, and communicate via

https calls to both web servers. When a specific module is not licensed, the corresponding GUI

components will be disabled. Both server components will also communicate directly with each

other using web services.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 31 /34

Quipu Model Manager The QUIPU Model Manager module will complement the functionality of the Open Source QUI-

PU primarily directed towards larger installations, where multiple project teams may work on

expanding the data warehouse and modify existing data marts or design new ones.

Changes in the data warehouse structure (e.g. splitting a satellite) may require data to be moved in

bulk from one table to another, with possibly recalculation of valid periods (start-end dates).

QMM is a substantial investment (development has started) that involves the creation of a new

repository able to hold the additional (meta-)data elements and functions.

The first version of QMM will focus on change management on the various QUIPU models, and

offer functions to:

 Check model versions in/out of a central repository

 Report on changes made between model versions

 Generate code to modify existing models in the data warehouse

As some of these functions can become very complex, the first release will probably focus on the

more straightforward situations. We will then add more advanced routines gradually with each

further release.

In later versions we will add functionality to move data from outdated to new structures in the data

warehouse and support project teams.

Integration with ETL/DW
management tools

Larger organizations often own tools that assist them in designing and managing the operational

data logistic processes. Tools like Informatica PowerCenter, SAS Data Integration Server, Oracle

Data Integrator, etc.

These tools are built around a repository, that contains all the ETL procedures and schedules. Data

flows can be modeled using dedicated design tools.

The drawback of building a Data Vault with these tools is that they are very 'model neutral' and

thus have no fundamental understanding of the Data Vault. They therefor lack the intelligent sup-

port QUIPU offers when transforming source models to Data Vault models and then Data Vault

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 32 /34

models to Data Marts.

QUIPU will not compete with the strong points of these tools (in terms of operational management

of a data warehouse environment) but will instead seek to complement these tools by feeding the

generated data models and ETL code into their repositories.

Clearly such connections will (greatly!) benefit only the customers that have made substantial

investments in such tools. As the customer base for these developments is small we believe it is fair

to develop these modules as commercial add-ons.

Support for BI tools Many BI front-end tools have a propriety data access layer. Some tools implement an optimized

physical data storage (e.g. Cognos cube, QlikView data file), others implement a virtual layer that

retrieves the required data from an underlying data base (Business Objects Universe).

The maintenance challenge for BI competence centers is caused by the fact that these data access

layers are affected by changes in the data warehouse (or data marts).

So, when new data elements are added to the data warehouse the data access layer needs to be

adapted before the data becomes available in the front-end tool.

Specific modules will be developed to generate and re-generate components of the data access

layer when necessary due to changes in the data warehouse or data marts.

Obviously these modules will be very specific for each target front-end environment and function-

ality may differ between modules.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 33 /34

More information

About QOSQO

QOSQO is founded in 2008 as a sister company of Nippur (founded in 2002). QOSQO is the leading company

behind QUIPU, and provides data warehouse services for companies using QUIPU or other Data Vault modeled data

warehouses.

Licence model

QUIPU is distributed under the GPLv3 licence model. More information can be found

on http://www.opensource.org/licenses/gpl-3.0.html.

Source code availability

The QUIPU source code of all released versions is available for developers either via sourceforge.net website or upon

request via email to support@QOSQO.nl.

 QUIPU 1.1 Whitepaper

OPEN SOURCE DATAWAREHOUSING 34 /34

 HTTP://WWW.QOSQO.NL

